Derivation of engineering formulas in order to calculate energy-power parameters and a shape change in a semi-finished product in the process of combined extrusion
DOI:
https://doi.org/10.15587/1729-4061.2019.160585Keywords:
combined extrusion, kinematic module, energy method, linearization of functions, process of deformation.Abstract
The possibilities of using and embedding kinematic trapezoid modules with curvilinear boundaries of different shapes were explored. Based on the energy method, the generalized formulas for calculating the power of deformation forces inside the axial trapezoidal kinematic module were derived. Different types of selecting the functions that describe a curvilinear boundary of the axial trapezoidal module were identified. We have analyzed the possibilities of using known techniques for the linearization of integrand dependences in order to calculate the power of deformation forces when it is impossible to obtain a given magnitude in the form of an analytical function. The ways to derive engineering formulas for the computation of components of reduced pressure inside an axial trapezoidal kinematic module were proposed. Based on the energy method, we obtained formulas for the calculation of a step-by-step change in the shape of a semi-finished product under assumption within the axial trapezoidal kinematic module.
We modeled the process of combined extrusion of hollow parts with a flange and established regularities in shape formation depending on geometrical parameters. The data about a step-by-step change in the shape of a semi-finished product during deformation were obtained. A comparative analysis of calculation schemes for the rectilinear trapezoidal kinematic module and with a curvilinear boundary under assumption within the studied module was performed.
It was confirmed that the reported ways for obtaining engineering formulas, as well as the algorithm for the calculation of processes of combined extrusion that is based on them, simplify the development of technological recommendations. This applies both to determining the force mode of extrusion and preliminary assessment of a change in the shape of a semi-finished product with the possibility to control a metal outflow in the process of deformationReferences
- Zhang, S. H., Wang, Z. R., Wang, Z. T., Xu, Y., Chen, K. B. (2004). Some new features in the development of metal forming technology. Journal of Materials Processing Technology, 151 (1-3), 39–47. doi: https://doi.org/10.1016/j.jmatprotec.2004.04.098
- Chang, Y. S., Hwang, B. B. (2000). A study on the forming characteristics of radial extrusions combined with forward extrusion. Transactions of materials processing, 9 (3), 242–248.
- Cho, H. Y., Min, G. S., Jo, C. Y., Kim, M. H. (2003). Process design of the cold forging of a billet by forward and backward extrusion. Journal of Materials Processing Technology, 135 (2-3), 375–381. doi: https://doi.org/10.1016/s0924-0136(02)00870-1
- Alieva, L. I. (2016). Processy kombinirovannogo plasticheskogo deformirovaniya i vydavlivaniya. Obrabotka materialov davleniem, 1, 100–108.
- Aliieva, L., Zhbankov, Y. (2015). Radial-direct extrusion with a movable mandrel. Metallurgical and Mining Industry, 11, 175–183.
- Ogorodnikov, V. A., Dereven'ko, I. A. (2013). Modeling combined extrusion process to assess the limit of forming blanks from different materials. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI, 2 (1 (15)), 224–229.
- Farhoumand, A., Ebrahimi, R. (2009). Analysis of forward–backward-radial extrusion process. Materials & Design, 30 (6), 2152–2157. doi: https://doi.org/10.1016/j.matdes.2008.08.025
- Seo, J. M., Jang, D. H., Min, K. H., Koo, H. S., Kim, S. H., Hwang, B. B. (2007). Forming Load Characteristics of Forward and Backward Tube Extrusion Process in Combined Operation. Key Engineering Materials, 340-341, 649–654. doi: https://doi.org/10.4028/www.scientific.net/kem.340-341.649
- Alyeva, L. Y., Hrudkyna, N. S., Kriuher, K. (2017). The simulation of radial-backward extrusion processes of hollow parts. Mechanics and Advanced Technologies, 1 (79), 91–99. doi: https://doi.org/10.20535/2521-1943.2017.79.95873
- Choi, H.-J., Choi, J.-H., Hwang, B.-B. (2001). The forming characteristics of radial–backward extrusion. Journal of Materials Processing Technology, 113 (1-3), 141–147. doi: https://doi.org/10.1016/s0924-0136(01)00703-8
- Golovin, V. A., Filippov, Yu. K., Ignatenko, V. N. (2005). Osobennosti kinematiki techeniya metalla pri kombinirovannom holodnom vydavlivanii polyh detaley s flancem zadannyh razmerov. Prioritety razvitiya otechestvennogo avtotraktorostroeniya i podgotovki inzhenernyh i nauchnyh kadrov: materialy 49-y Mezhdunarodnoy nauchno-tekhnicheskoy konferencii AAI. Sekciya 6 «Zagotovitel'nye proizvodstva v mashinostroenii. Podsekciya «MiTOMD». Ch. 2. Moscow: MAMI, 18–20.
- Vlasenko, K., Hrudkina, N., Reutova, I., Chumak, O. (2018). Development of calculation schemes for the combined extrusion to predict the shape formation of axisymmetric parts with a flange. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 51–59. doi: https://doi.org/10.15587/1729-4061.2018.131766
- Aliiev, I., Aliieva, L., Grudkina, N., Zhbankov, I. (2011). Prediction of the Variation of the Form in the Processes of Extrusion. Metallurgical and Mining Industry, 3 (7), 17–22.
- Chudakov, P. D., Gusinskiy, V. I. (1974). Nestacionarnoe plasticheskoe techenie uprochnyayushchegosya materiala. Issledovaniya v oblasti plastichnosti i obrabotki metallov davleniem, 34–41.
- Stepanskiy, L. G. (1979). Raschety processov obrabotki metallov davleniem. Moscow: Mashinostroenie, 215.
- Chudakov, P. D. (1979). O vychislenii moshchnosti plasticheskoy deformacii. Izvestiya vuzov. Mashinostroenie, 7, 146–148.
- Chudakov, P. D. (1992). Verhnyaya ocenka moshchnosti plasticheskoy deformacii s ispol'zovaniem minimiziruyushchey funkcii. Izvestiya vuzov. Mashinostroenie, 9, 13–15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Natalia Hrudkina, Leila Aliieva, Payman Abhari, Mykola Kuznetsov, Serhii Shevtsov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.