Forming the structure of whipped desserts when introducing the food additive "Magnetofood" to their formulation
DOI:
https://doi.org/10.15587/1729-4061.2019.161855Keywords:
food additive "Magnetofood", whipped desserts, stabilizing and structure-forming properties.Abstract
The food additive "Magnetofood", in the form of a nanopowder with particles the size of (70‒80) nm, has been designed and proposed as an improver for the structure of whipped desserts. "Magnetofood" can both independently form the structural and mechanical properties of whipped masses and influence a gel-forming agent, participating in chemical and electrostatic interactions with it. Therefore, the food additive "Magnetofood" can simultaneously influence several technological properties in the food disperse system: it can become a stabilizer, thickener, foam- and jelly-forming agents. Owing to Fe (II), nano dimensions, and the developed active surface, "Magnetofood" acquires sorption, complexing, emulsifying, moisture retaining, fat retaining, water-binding, stabilizing, structure-forming properties. That allows us to recommend "Magnetofood" as an additive with a comprehensive effect in order to form the structure of whipped desserts and to improve the quality of whipped dessert products. It has been established that introducing the additive "Magnetofood" to the samples of berry-fruit mousses and fruit-and-egg white jellies in the amount of 0.10 %, 0.15 %, 0.20 % by weight of the formulation mixture improves the structural-mechanical properties of whipped desserts. Using the additive "Magnetofood" decreases density by (29±1) kg/m3 ‒ for mousses, by (26±1) kg/m3 ‒ for fruit-and-egg white jellies, as well as the duration of whipping by ~15 % compared to control. It has been proven that introducing the additive "Magnetofood" contributes to an increase in: plastic strength ‒ by 1.23 times; porosity ‒ by (14.3±0,7) % for mousses and by (12.7±0.6) % ‒ for fruit-and-egg white jellies; foam stability by (22.5±1.1) % compared to control. In addition, a foam-forming capacity increases by (40±2) % for mousses and by (55 3) % for fruit-and-egg white jellies; effective viscosity ‒ by (4.4 0.2) % for mousses and by (4.1±0.2) % ‒ for fruit-and-egg white jellies compared to control. We have established that the rational content of the food additive "Magnetofood" equals 0.15 % of formulation composition.
The obtained experimental data could be applied when developing technologies for whipped dessert products.
References
- Horichenko, N. V., Horalchuk, A. B., Omelchenko, S. B. (2014). Rol PAR u protsesakh formuvannia mizhfaznykh adsorbtsiynykh shariv pinoemulsiynykh produktiv. Innovatsiyni tekhnolohiyi rozvytku u sferi kharchovykh vyrobnytstv, hotelno-restorannoho biznesu, ekonomiky ta pidpryiemnytstva: naukovi poshuky molodi: vseukr. nauk.-prakt. konf. molodykh uchenykh i studentiv. Ch. 1. Kharkiv: KhDUKhT, 5.
- Myronov, O. Yu., Horalchuk, A. B., Tovma, L. F. (2013). Obgruntuvannia vykorystannia poverkhnevo-aktyvnykh rechovyn v tekhnolohiyi pinopodibnoi produktsiyi na osnovi yaiechnoho bilka. Aktualni problemy rozvytku kharchovykh vyrobnytstv, restorannoho ta hotelnoho hospodarstva i torhivli: vseukr. nauk.- prakt. konf. molodykh uchenykh i studentiv. Ch. 1. Kharkiv: KhDUKhT, 35.
- Omelchenko, S. B., Shania, I. M., Horalchuk, A. B. (2013). Obgruntuvannia vmistu emulhatoriv u skladi pinoemulsiynykh produktiv. Aktualni problemy rozvytku kharchovykh vyrobnytstv, restorannoho hospodarstva i torhivli: vseukr. nauk.-prakt. konf. molodykh uchenykh i studentiv. Ch. 1. Kharkiv: KhDUKhT, 53.
- Omelchenko, S. B., Horalchuk, A. B. (2015). Vyznachennia roli poverkhnevo-aktyvnykh rechovyn u formuvanni mizhfaznykh adsorbtsiynykh shariv. Innovatsiyni aspekty rozvytku obladnannia kharchovoi i hotelnoi industrii v umovakh suchasnosti: mizhnar. nauk.-prakt. konf. Kharkiv: KhDUKhT, 291–292.
- Dickinson, E. (2006). Interfacial Particles in Food Emulsions and Foams. Colloidal Particles at Liquid Interfaces, 298–327. doi: https://doi.org/10.1017/cbo9780511536670.009
- Percevoy, F. V., Foshchan, A. L., Savgira, Yu. A. et. al. (2003). Proizvodstvo zheleynoy i vzbivnoy produkcii s ispol'zovaniem modifikatorov. Dnepropetrovsk: Porogi, 204.
- Ilyukha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsykhanovska, I. V. (2010). Production technology and quality indices of a food additive based on magnetite. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
- Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Svidlo, K., Gontar, T. et. al. (2018). Substantiation of the mechanism of interaction between biopolymers of ryeandwheat flour and the nanoparticles of the magnetofооd food additive in order to improve moistureretaining capacity of dough. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 70–80. doi: https://doi.org/10.15587/1729-4061.2018.126358
- Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Bryzytska, O. (2018). Substantiation of the interaction mechanism between the lipo- and glucoproteids of rye-wheat flour and nanoparticles of the food additive «Magnetofооd». Eastern-European Journal of Enterprise Technologies, 4 (11 (94)), 61–68. doi: https://doi.org/10.15587/1729-4061.2018.140048
- Karim, A. A., Bhat, R. (2008). Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in Food Science & Technology, 19 (12), 644–656. doi: https://doi.org/10.1016/j.tifs.2008.08.001
- Campbell, G. (1999). Creation and characterisation of aerated food products. Trends in Food Science & Technology, 10 (9), 283–296. doi: https://doi.org/10.1016/s0924-2244(00)00008-x
- Lazidis, A., Hancocks, R. D., Spyropoulos, F., Kreuß, M., Berrocal, R., Norton, I. T. (2016). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53, 209–217. doi: https://doi.org/10.1016/j.foodhyd.2015.02.022
- Green, A. J., Littlejohn, K. A., Hooley, P., Cox, P. W. (2013). Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid & Interface Science, 18 (4), 292–301. doi: https://doi.org/10.1016/j.cocis.2013.04.008
- Dickinson, E. (2015). Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability. Journal of Colloid and Interface Science, 449, 38–45. doi: https://doi.org/10.1016/j.jcis.2014.09.080
- Murray, B. S., Durga, K., Yusoff, A., Stoyanov, S. D. (2011). Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids, 25 (4), 627–638. doi: https://doi.org/10.1016/j.foodhyd.2010.07.025
- Phawaphuthanon, N., Yu, D., Ngamnikom, P., Shin, I.-S., Chung, D. (2019). Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocolloids, 88, 119–126. doi: https://doi.org/10.1016/j.foodhyd.2018.09.041
- Dabestani, M., Yeganehzad, S. (2019). Effect of Persian gum and Xanthan gum on foaming properties and stability of pasteurized fresh egg white foam. Food Hydrocolloids, 87, 550–560. doi: https://doi.org/10.1016/j.foodhyd.2018.08.030
- Foshchan, A. L. (2010). Rehuliuvannia reolohichnykh ta strukturno-mekhanichnikh vlastyvostei zheleinykh vyrobiv ta napivfabrykativ na osnovi kombinovanykh system drahle utvoriuvachiv. Khlibopekarska i kondyterska promyslovist Ukrainy, 2, 29–30.
- Ignatova, T. A., Podkorytova, A. V. (2014). Ispol'zovanie gidrogeley karraginanov v tekhnologii zheleynyh produktov. Aktual'nye problemy osvoeniya biologicheskih resursov mirovogo okeana: materialy III Mezhdunar. nauch.-tekhn. konf. Vladivostok: Dal'rybvtuz, 58–63.
- Ellis, A. L., Mills, T. B., Norton, I. T., Norton-Welch, A. B. (2019). The hydrophobic modification of kappa carrageenan microgel particles for the stabilisation of foams. Journal of Colloid and Interface Science, 538, 165–173. doi: https://doi.org/10.1016/j.jcis.2018.11.091
- Bovšková, H., Míková, K. (2011). Factors influencing egg white foam quality. Czech Journal of Food Sciences, 29 (4), 322–327. doi: https://doi.org/10.17221/435/2010-cjfs
- Cotterill, O. J., Chang, C. C., Mcbee, L. E., Heymann, H. (1992). Metallic Cations Affect Functional Performance of Spray-Dried Heat-Treated Egg White. Journal of Food Science, 57 (6), 1321–1321. doi: https://doi.org/10.1111/j.1365-2621.1992.tb06846.x
- Corry, J. E. L., James, C., James, S. J., Hinton, M. (1995). Salmonella, Campylobacter and Escherichia coli 0157:H7 decontamination techniques for the future. International Journal of Food Microbiology, 28 (2), 187–196. doi: https://doi.org/10.1016/0168-1605(95)00056-9
- Kilasoniya, K. G. (2004). Using feijoa and kiwi puree for production of whipped confectionary products. Pishchevaya promyshlennost', 12, 79.
- Iorgacheva, E. G. (2002). Pyure iz topinambura – recepturnyy ingredient konditerskih izdeliy. Zb. nauk. pr. ODAKhT, 23, 120–124.
- Fioramonti, S. A., Perez, A. A., Aríngoli, E. E., Rubiolo, A. C., Santiago, L. G. (2014). Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. Food Hydrocolloids, 35, 129–136. doi: https://doi.org/10.1016/j.foodhyd.2013.05.001
- Mao, L., Boiteux, L., Roos, Y. H., Miao, S. (2014). Evaluation of volatile characteristics in whey protein isolate–pectin mixed layer emulsions under different environmental conditions. Food Hydrocolloids, 41, 79–85. doi: https://doi.org/10.1016/j.foodhyd.2014.03.025
- Wang, M.-P., Chen, X.-W., Guo, J., Yang, J., Wang, J.-M., Yang, X.-Q. (2019). Stabilization of foam and emulsion by subcritical water-treated soy protein: Effect of aggregation state. Food Hydrocolloids, 87, 619–628. doi: https://doi.org/10.1016/j.foodhyd.2018.08.047
- Kaprel'yanc, L. V., Iorgacheva, E. G., Banova, S. I. (2002). Modificirovannye soeprodukty s uluchshennymi penoobrazuyushchimi i emul'giruyushchimi svoystvami. Zernovi produkty i kombikormy, 2, 23–25.
- Burgos-Díaz, C., Wandersleben, T., Olivos, M., Lichtin, N., Bustamante, M., Solans, C. (2019). Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): Chemical characterization and emulsifying properties. Food Hydrocolloids, 87, 847–857. doi: https://doi.org/10.1016/j.foodhyd.2018.09.018
- Jiang, X., Yucel Falco, C., Dalby, K. N., Siegumfeldt, H., Arneborg, N., Risbo, J. (2019). Surface engineered bacteria as Pickering stabilizers for foams and emulsions. Food Hydrocolloids, 89, 224–233. doi: https://doi.org/10.1016/j.foodhyd.2018.10.044
- Hu, N., Wu, Z., Jin, L., Li, Z., Liu, W., Huang, D., Yang, C. (2019). Nanoparticle as a novel foam controller for enhanced protein separation from sweet potato starch wastewater. Separation and Purification Technology, 209, 392–400. doi: https://doi.org/10.1016/j.seppur.2018.07.064
- Zdobnov, A. I., Cyganenko, V. A. (2009). Sbornik receptur blyud i kulinarnyh izdeliy: Dlya predpriyatiy obshchestvennogo pitaniya. Kyiv: OOO “Izdatel'stvo Ariy”, 680.
- Tsykhanovska, I., Yevlash, V., Alexandrov, A., Khamitova, B., Svidlo, K., Nechuiviter, O. (2019). Improving the technique of scrambled desserts using the food supplement “Magnetofood”. EUREKA: Life Sciences, 2, 40–48. doi: http://dx.doi.org/10.21303/2504-5695.2019.00856
- Arkhipov, V. V., Ivannykova, T. V., Arkhipova, A. V. (2007). Restoranna sprava: Asortyment, tekhnolohiya i upravlinnia yakistiu produktsiyi v suchasnomu restorani. Kyiv: Firma «IIKOS», Tsentr navchalnoi literatury, 382.
- Zakharchuk, V. H., Kundilovska, T. A., Haidukovych, H. Ye. (2016). Tekhnolohiya produktsiyi restorannoho hospodarstva. Odessa: ONEU, Atlant VOI SOIU, 479.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Iryna Tsykhanovska, Viktoria Yevlash, Alexandr Alexandrov, Barna Khamitova, Karyna Svidlo, Olesia Nechuiviter
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.