Forming the structure of whipped desserts when introducing the food additive "Magnetofood" to their formulation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.161855

Keywords:

food additive "Magnetofood", whipped desserts, stabilizing and structure-forming properties.

Abstract

The food additive "Magnetofood", in the form of a nanopowder with particles the size of (70‒80) nm, has been designed and proposed as an improver for the structure of whipped desserts. "Magnetofood" can both independently form the structural and mechanical properties of whipped masses and influence a gel-forming agent, participating in chemical and electrostatic interactions with it. Therefore, the food additive "Magnetofood" can simultaneously influence several technological properties in the food disperse system: it can become a stabilizer, thickener, foam- and jelly-forming agents. Owing to Fe (II), nano dimensions, and the developed active surface, "Magnetofood" acquires sorption, complexing, emulsifying, moisture retaining, fat retaining, water-binding, stabilizing, structure-forming properties. That allows us to recommend "Magnetofood" as an additive with a comprehensive effect in order to form the structure of whipped desserts and to improve the quality of whipped dessert products. It has been established that introducing the additive "Magnetofood" to the samples of berry-fruit mousses and fruit-and-egg white jellies in the amount of 0.10 %, 0.15 %, 0.20 % by weight of the formulation mixture improves the structural-mechanical properties of whipped desserts. Using the additive "Magnetofood" decreases density by (29±1) kg/m3 ‒ for mousses, by (26±1) kg/m3 ‒ for fruit-and-egg white jellies, as well as the duration of whipping by ~15 % compared to control. It has been proven that introducing the additive "Magnetofood" contributes to an increase in: plastic strength ‒ by 1.23 times; porosity ‒ by (14.3±0,7) % for mousses and by (12.7±0.6) % ‒ for fruit-and-egg white jellies; foam stability by (22.5±1.1) % compared to control. In addition, a foam-forming capacity increases by (40±2) % for mousses and by (55 3) % for fruit-and-egg white jellies; effective viscosity ‒ by (4.4 0.2) % for mousses and by (4.1±0.2) % ‒ for fruit-and-egg white jellies compared to control. We have established that the rational content of the food additive "Magnetofood" equals 0.15 % of formulation composition.

The obtained experimental data could be applied when developing technologies for whipped dessert products.

Author Biographies

Iryna Tsykhanovska, Ukrainian Engineering Pedagogics Academy Universitetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor

Department of Food and Chemical Technologies

Viktoria Yevlash, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Chemistry, Microbiology and Food Hygiene

Alexandr Alexandrov, Ukrainian Engineering Pedagogics Academy Universitetska str., 16, Kharkiv, Ukraine, 61003

PhD, Associate Professor, Head of Department

Department of Food and Chemical Technologies

Barna Khamitova, M. Auezov South Kazakhstan State University Taukekhan ave., 5, Shymkent, Kazakhstan, 160012

PhD, Associate Professor

Department of Technology and Food Safety

Karyna Svidlo, Kharkiv Trade and Economics Institute of Kyiv National University of Trade and Economics Otakara Yarosha lane, 8, Kharkiv, Ukraine, 61045

Doctor of Technical Sciences, Associate Professor

Department of Technology and Restaurant Business Organization

Olesia Nechuiviter, Ukrainian Engineering Pedagogics Academy Universitetska str., 16, Kharkiv, Ukraine, 61003

Doctor of Physical and Mathematical Sciences, Professor

Department of Information Computer and Printing Technologies

References

  1. Horichenko, N. V., Horalchuk, A. B., Omelchenko, S. B. (2014). Rol PAR u protsesakh formuvannia mizhfaznykh adsorbtsiynykh shariv pinoemulsiynykh produktiv. Innovatsiyni tekhnolohiyi rozvytku u sferi kharchovykh vyrobnytstv, hotelno-restorannoho biznesu, ekonomiky ta pidpryiemnytstva: naukovi poshuky molodi: vseukr. nauk.-prakt. konf. molodykh uchenykh i studentiv. Ch. 1. Kharkiv: KhDUKhT, 5.
  2. Myronov, O. Yu., Horalchuk, A. B., Tovma, L. F. (2013). Obgruntuvannia vykorystannia poverkhnevo-aktyvnykh rechovyn v tekhnolohiyi pinopodibnoi produktsiyi na osnovi yaiechnoho bilka. Aktualni problemy rozvytku kharchovykh vyrobnytstv, restorannoho ta hotelnoho hospodarstva i torhivli: vseukr. nauk.- prakt. konf. molodykh uchenykh i studentiv. Ch. 1. Kharkiv: KhDUKhT, 35.
  3. Omelchenko, S. B., Shania, I. M., Horalchuk, A. B. (2013). Obgruntuvannia vmistu emulhatoriv u skladi pinoemulsiynykh produktiv. Aktualni problemy rozvytku kharchovykh vyrobnytstv, restorannoho hospodarstva i torhivli: vseukr. nauk.-prakt. konf. molodykh uchenykh i studentiv. Ch. 1. Kharkiv: KhDUKhT, 53.
  4. Omelchenko, S. B., Horalchuk, A. B. (2015). Vyznachennia roli poverkhnevo-aktyvnykh rechovyn u formuvanni mizhfaznykh adsorbtsiynykh shariv. Innovatsiyni aspekty rozvytku obladnannia kharchovoi i hotelnoi industrii v umovakh suchasnosti: mizhnar. nauk.-prakt. konf. Kharkiv: KhDUKhT, 291–292.
  5. Dickinson, E. (2006). Interfacial Particles in Food Emulsions and Foams. Colloidal Particles at Liquid Interfaces, 298–327. doi: https://doi.org/10.1017/cbo9780511536670.009
  6. Percevoy, F. V., Foshchan, A. L., Savgira, Yu. A. et. al. (2003). Proizvodstvo zheleynoy i vzbivnoy produkcii s ispol'zovaniem modifikatorov. Dnepropetrovsk: Porogi, 204.
  7. Ilyukha, N. G., Barsova, Z. V., Kovalenko, V. A., Tsykhanovska, I. V. (2010). Production technology and quality indices of a food additive based on magnetite. Eastern-European Journal of Enterprise Technologies, 6 (10 (48)), 32–35. Available at: http://journals.uran.ua/eejet/article/view/5847/5271
  8. Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Svidlo, K., Gontar, T. et. al. (2018). Substantiation of the mechanism of interaction between biopolymers of rye­and­wheat flour and the nanoparticles of the magnetofооd food additive in order to improve moisture­retaining capacity of dough. Eastern-European Journal of Enterprise Technologies, 2 (11 (92)), 70–80. doi: https://doi.org/10.15587/1729-4061.2018.126358
  9. Tsykhanovska, I., Evlash, V., Alexandrov, A., Lazarieva, T., Bryzytska, O. (2018). Substantiation of the interaction mechanism between the lipo- and glucoproteids of rye-wheat flour and nanoparticles of the food additive «Magnetofооd». Eastern-European Journal of Enterprise Technologies, 4 (11 (94)), 61–68. doi: https://doi.org/10.15587/1729-4061.2018.140048
  10. Karim, A. A., Bhat, R. (2008). Gelatin alternatives for the food industry: recent developments, challenges and prospects. Trends in Food Science & Technology, 19 (12), 644–656. doi: https://doi.org/10.1016/j.tifs.2008.08.001
  11. Campbell, G. (1999). Creation and characterisation of aerated food products. Trends in Food Science & Technology, 10 (9), 283–296. doi: https://doi.org/10.1016/s0924-2244(00)00008-x
  12. Lazidis, A., Hancocks, R. D., Spyropoulos, F., Kreuß, M., Berrocal, R., Norton, I. T. (2016). Whey protein fluid gels for the stabilisation of foams. Food Hydrocolloids, 53, 209–217. doi: https://doi.org/10.1016/j.foodhyd.2015.02.022
  13. Green, A. J., Littlejohn, K. A., Hooley, P., Cox, P. W. (2013). Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid & Interface Science, 18 (4), 292–301. doi: https://doi.org/10.1016/j.cocis.2013.04.008
  14. Dickinson, E. (2015). Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability. Journal of Colloid and Interface Science, 449, 38–45. doi: https://doi.org/10.1016/j.jcis.2014.09.080
  15. Murray, B. S., Durga, K., Yusoff, A., Stoyanov, S. D. (2011). Stabilization of foams and emulsions by mixtures of surface active food-grade particles and proteins. Food Hydrocolloids, 25 (4), 627–638. doi: https://doi.org/10.1016/j.foodhyd.2010.07.025
  16. Phawaphuthanon, N., Yu, D., Ngamnikom, P., Shin, I.-S., Chung, D. (2019). Effect of fish gelatine-sodium alginate interactions on foam formation and stability. Food Hydrocolloids, 88, 119–126. doi: https://doi.org/10.1016/j.foodhyd.2018.09.041
  17. Dabestani, M., Yeganehzad, S. (2019). Effect of Persian gum and Xanthan gum on foaming properties and stability of pasteurized fresh egg white foam. Food Hydrocolloids, 87, 550–560. doi: https://doi.org/10.1016/j.foodhyd.2018.08.030
  18. Foshchan, A. L. (2010). Rehuliuvannia reolohichnykh ta strukturno-mekhanichnikh vlastyvostei zheleinykh vyrobiv ta napivfabrykativ na osnovi kombinovanykh system drahle utvoriuvachiv. Khlibopekarska i kondyterska promyslovist Ukrainy, 2, 29–30.
  19. Ignatova, T. A., Podkorytova, A. V. (2014). Ispol'zovanie gidrogeley karraginanov v tekhnologii zheleynyh produktov. Aktual'nye problemy osvoeniya biologicheskih resursov mirovogo okeana: materialy III Mezhdunar. nauch.-tekhn. konf. Vladivostok: Dal'rybvtuz, 58–63.
  20. Ellis, A. L., Mills, T. B., Norton, I. T., Norton-Welch, A. B. (2019). The hydrophobic modification of kappa carrageenan microgel particles for the stabilisation of foams. Journal of Colloid and Interface Science, 538, 165–173. doi: https://doi.org/10.1016/j.jcis.2018.11.091
  21. Bovšková, H., Míková, K. (2011). Factors influencing egg white foam quality. Czech Journal of Food Sciences, 29 (4), 322–327. doi: https://doi.org/10.17221/435/2010-cjfs
  22. Cotterill, O. J., Chang, C. C., Mcbee, L. E., Heymann, H. (1992). Metallic Cations Affect Functional Performance of Spray-Dried Heat-Treated Egg White. Journal of Food Science, 57 (6), 1321–1321. doi: https://doi.org/10.1111/j.1365-2621.1992.tb06846.x
  23. Corry, J. E. L., James, C., James, S. J., Hinton, M. (1995). Salmonella, Campylobacter and Escherichia coli 0157:H7 decontamination techniques for the future. International Journal of Food Microbiology, 28 (2), 187–196. doi: https://doi.org/10.1016/0168-1605(95)00056-9
  24. Kilasoniya, K. G. (2004). Using feijoa and kiwi puree for production of whipped confectionary products. Pishchevaya promyshlennost', 12, 79.
  25. Iorgacheva, E. G. (2002). Pyure iz topinambura – recepturnyy ingredient konditerskih izdeliy. Zb. nauk. pr. ODAKhT, 23, 120–124.
  26. Fioramonti, S. A., Perez, A. A., Aríngoli, E. E., Rubiolo, A. C., Santiago, L. G. (2014). Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. Food Hydrocolloids, 35, 129–136. doi: https://doi.org/10.1016/j.foodhyd.2013.05.001
  27. Mao, L., Boiteux, L., Roos, Y. H., Miao, S. (2014). Evaluation of volatile characteristics in whey protein isolate–pectin mixed layer emulsions under different environmental conditions. Food Hydrocolloids, 41, 79–85. doi: https://doi.org/10.1016/j.foodhyd.2014.03.025
  28. Wang, M.-P., Chen, X.-W., Guo, J., Yang, J., Wang, J.-M., Yang, X.-Q. (2019). Stabilization of foam and emulsion by subcritical water-treated soy protein: Effect of aggregation state. Food Hydrocolloids, 87, 619–628. doi: https://doi.org/10.1016/j.foodhyd.2018.08.047
  29. Kaprel'yanc, L. V., Iorgacheva, E. G., Banova, S. I. (2002). Modificirovannye soeprodukty s uluchshennymi penoobrazuyushchimi i emul'giruyushchimi svoystvami. Zernovi produkty i kombikormy, 2, 23–25.
  30. Burgos-Díaz, C., Wandersleben, T., Olivos, M., Lichtin, N., Bustamante, M., Solans, C. (2019). Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA®): Chemical characterization and emulsifying properties. Food Hydrocolloids, 87, 847–857. doi: https://doi.org/10.1016/j.foodhyd.2018.09.018
  31. Jiang, X., Yucel Falco, C., Dalby, K. N., Siegumfeldt, H., Arneborg, N., Risbo, J. (2019). Surface engineered bacteria as Pickering stabilizers for foams and emulsions. Food Hydrocolloids, 89, 224–233. doi: https://doi.org/10.1016/j.foodhyd.2018.10.044
  32. Hu, N., Wu, Z., Jin, L., Li, Z., Liu, W., Huang, D., Yang, C. (2019). Nanoparticle as a novel foam controller for enhanced protein separation from sweet potato starch wastewater. Separation and Purification Technology, 209, 392–400. doi: https://doi.org/10.1016/j.seppur.2018.07.064
  33. Zdobnov, A. I., Cyganenko, V. A. (2009). Sbornik receptur blyud i kulinarnyh izdeliy: Dlya predpriyatiy obshchestvennogo pitaniya. Kyiv: OOO “Izdatel'stvo Ariy”, 680.
  34. Tsykhanovska, I., Yevlash, V., Alexandrov, A., Khamitova, B., Svidlo, K., Nechuiviter, O. (2019). Improving the technique of scrambled desserts using the food supplement “Magnetofood”. EUREKA: Life Sciences, 2, 40–48. doi: http://dx.doi.org/10.21303/2504-5695.2019.00856
  35. Arkhipov, V. V., Ivannykova, T. V., Arkhipova, A. V. (2007). Restoranna sprava: Asortyment, tekhnolohiya i upravlinnia yakistiu produktsiyi v suchasnomu restorani. Kyiv: Firma «IIKOS», Tsentr navchalnoi literatury, 382.
  36. Zakharchuk, V. H., Kundilovska, T. A., Haidukovych, H. Ye. (2016). Tekhnolohiya produktsiyi restorannoho hospodarstva. Odessa: ONEU, Atlant VOI SOIU, 479.

Downloads

Published

2019-04-02

How to Cite

Tsykhanovska, I., Yevlash, V., Alexandrov, A., Khamitova, B., Svidlo, K., & Nechuiviter, O. (2019). Forming the structure of whipped desserts when introducing the food additive "Magnetofood" to their formulation. Eastern-European Journal of Enterprise Technologies, 2(11 (98), 45–55. https://doi.org/10.15587/1729-4061.2019.161855

Issue

Section

Technology and Equipment of Food Production