The model formation of the optimization of trains passing on the sidings to marshalling station

Authors

  • Олександр Валерійович Лаврухін Ukrainian State Academy of Railway Transport Majd. Feuerbach, 7, Kharkov, Ukraine, 61050, Ukraine
  • Петро Віталійович Долгополов Ukrainian State Academy of Railway Transport Majd. Feuerbach, 7, Kharkov, Ukraine, 61050, Ukraine
  • Юрій Валерійович Доценко Donetsk Branch of the Ukrainian State Academy of Railway Transport Str. Horn, 6, Donetsk, Ukraine, 83018, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.16272

Keywords:

railway hub, marshalling station, siding, scheduling theory, downtime reduction

Abstract

The mathematical model of the optimization of trains passing sidings to marshalling stations was formed on the basis of the scheduling theory. As the work service devices, the elements of a railway hub are accepted, such as railway ferrying and block stations, stations and station yards. As works, freight, passenger and repair trains are accepted, as well as light-running locomotives, going by the rail access to the marshalling station.

The peculiarities of the technology of trains passing on the railway hub elements require parallel-consecutive connection of the service devices.

The model allows to determine the optimal schedule of trains with minimum delays at each of their uncoordinated arrival to the railway hub. It considerably reduces unproductive trains downtime - and especially during the condensation of train flows, delay of trains, and railway ferrying stations closing for repair works. 

Author Biographies

Олександр Валерійович Лаврухін, Ukrainian State Academy of Railway Transport Majd. Feuerbach, 7, Kharkov, Ukraine, 61050

Doctor of Science in Technology

Management of operational work

Петро Віталійович Долгополов, Ukrainian State Academy of Railway Transport Majd. Feuerbach, 7, Kharkov, Ukraine, 61050

Ph.D., Associate Professor

Management of operational work

Юрій Валерійович Доценко, Donetsk Branch of the Ukrainian State Academy of Railway Transport Str. Horn, 6, Donetsk, Ukraine, 83018

Ph.D., Associate Professor

The department of transportation and management of the railways

References

  1. Долгополов, П.В. Удосконалення місцевої роботи залізничного вузла на основі теорії розкладів [Текст] / П.В. Долгополов, О.О. Бовкун // Східно-Європейський журнал передових технологій. – 2012. – T. 2, № 11(56). - С. 30-32.
  2. Грунтов, П.С. Управление эксплуатационной работой и качеством перевозок на железнодорожном транспорте [Текст] : учебник для вузов ж.д. транспорта / П.С. Грунтов, Ю.В.Дьяков, А.М. Макарочкин. – М.: Транспорт, 1994. – 543 с.
  3. Танаев, В.С. Введение в теорию расписаний [Текст] / В.С. Танаев, В.В. Шкурба; под ред. Д.Б. Юдина. – М.: Наука, 1975. – 256с.
  4. Танаев, В.С. Теория расписаний. Многостадийные системы [Текст] / В.С. Танаев, Ю.Н. Сотсков, В.А. Струсевич. – М.: Наука, 1989. – 328 с.
  5. Du, J. Minimizing total tardiness on one processor is NP-hard [Text] / J. Duand and J. Y.-T. Leung // Math. Oper. Res. – 1990. – № 15. – pp. 483–495.
  6. Merkle, D. An Ant Algorithm with a New Pheromone Evaluation Rule for Total Tardiness Problem [Text] / D. Merkle, M. Middendorf // EvoWorkShops 2000, LNCS 1803, Springer-Verlag. – 2000. – pp. 287–296.
  7. Pinedo, M. Scheduling. Theory, Algorithms, and Systems [Text] / M. Pinedo // Sprinter Science+Buisness Media LLC. – 2008. – 667p.
  8. Martel, C. Preemptive scheduling with release times, deadlines, and due times [Text] / C. Martel. – J. ACM, 1982. – 29, №3. – pp. 812–829.
  9. Della Croce, F. Lower bounds on the approximation ratios of leading heuristics for the single-machine total tardiness problem [Text] / F. Della Croce, A. Grosso, V. Paschos // Journal of Scheduling. – 2004. – № 7. – pp. 85–91
  10. Nakajima, K. Complexity results for scheduling tasks with fixing intervals on two types of machines [Text] / K. Nakajima, S.L. Hakimi, J.K. Lenstra. – SIAM J. Comput., 1982. – 11, №3. – pp. 512–520.
  11. Dolgopolov, P.V., Bovkun, O.O. (2012). Improvement of local work of railway junction on the basis of time-tables theory. Eastern-European Journal Of Enterprise Technologies, 2(11(56)), 30-32.
  12. Gruntov, P.S., D'jakov, Ju.V., Makarochkin, A.M. (1994). Upravlenie jekspluatacionnoj rabotoj i kachestvom perevozok na zheleznodorozhnom transporte : uchebnik dlja vuzov zh.d. transporta. M.: Transport. 543 p.
  13. Tanaev, V.S., Shkurba V.V. In: Judina, D.B. (1975). Vvedenie v teoriju raspisanij. M.: Nauka. 256 p.
  14. Tanaev, V.S., Sotskov, Ju.N., Strusevich, V.A. (1989). Teorija raspisanij. Mnogostadijnye sistemy. M.: Nauka. 328 p.
  15. Du, J., Leung, J. Y.-T. (1990). Minimizing total tardiness on one processor is NP-hard. Math. Oper. Res., № 15, 483–495.
  16. Merkle, D., Middendorf, M. (2000). An Ant Algorithm with a New Pheromone Evaluation Rule for Total Tardiness Problem. EvoWorkShops 2000, LNCS 1803, Springer-Verlag, 287–296.
  17. Pinedo, M. (2008). Scheduling. Theory, Algorithms, and Systems. Sprinter Science+Buisness Media LLC. 667p.
  18. Martel, C. (1982). Preemptive scheduling with release times, deadlines, and due times. J. ACM, 29, №3, 812–829.
  19. Della Croce, F., Grosso, A., Paschos, V. (2004). Lower bounds on the approximation ratios of leading heuristics for the single-machine total tardiness problem. Journal of Scheduling, № 7, 85–91
  20. Nakajima, K., Hakimi, S.L., Lenstra J.K. (1982). Complexity results for scheduling tasks with fixing intervals on two types of machines. SIAM J. Comput., 11, №3, 512–520.

Published

2013-08-11

How to Cite

Лаврухін, О. В., Долгополов, П. В., & Доценко, Ю. В. (2013). The model formation of the optimization of trains passing on the sidings to marshalling station. Eastern-European Journal of Enterprise Technologies, 4(3(64), 15–17. https://doi.org/10.15587/1729-4061.2013.16272

Issue

Section

Control systems