Development of the method of structural and parametric synthesis of the Quanton diagnostic and health complex

Authors

DOI:

https://doi.org/10.15587/1729-4061.2019.176174

Keywords:

parametric synthesis, Quanton complex, non-invasive diagnostics, spectral method, high-frequency therapy

Abstract

The synthesis method based on the use of information invariants is proposed, and structural-parametric synthesis of the Quanton diagnostic and health complex is performed. Structural and parametric optimization of the complex is carried out according to the performance criterion. As information invariants, complete (within the accepted classification) sets of methods to obtain the functional properties of the complex, phase cycles of the life cycle, structures of technical subsystems and methods for controlling the technicalization levels, productivity and energy efficiency of processes are used. The sets of methods to obtain the functional properties of the complex and phase cycles of the life cycle are formed by elementwise complication of the corresponding attributes. The set of structures of technical subsystems corresponding to certain levels of technicalization of functions is determined on the basis of the periodic system of technical elements. Complete sets of possible structural solutions for methods of controlling the productivity and energy efficiency of processes are obtained by the topological product of the sets of types of objects by the types of methods for ensuring the required properties or qualities of objects. For each structurally different variant, the usual object parameterization procedure and the system of dependencies of the deductive parametric optimization problem are applied. The system of dependencies is a specific case of parametric information invariants. The dependencies are specified using the information about the necessary source data and target transformations occurring in the Quanton complex during the interaction of subsystems. The algorithm for finding an extremely effective solution is step-by-step. This algorithm assumes a step-by-step determination of the optimal process performance parameters within the limiting contours and subsequent improvement of energy efficiency and quality. Due to the use of complete sets of process structures, elements and discrete-continuum procedure of search for the optimal solution, the integration of the optimization of technical innovation is achieved.

Author Biographies

Igor Ogorodnyk, International Academy of Science and Innovation Technologies Koltsova blvd., 14-E, Kyiv, Ukraine, 03148

Engineer-Inventor, Head of Department

Department of Innovative Medical Technology

Olena Vуsotska, National Aerospace University Kharkiv Aviation Institute Chkalova str., 17, Kharkіv, Ukraine, 61070

Doctor of Technical Sciences, Professor

Department of Radio-Electronic and Biomedical Computer-Aided Means and Technologies

Mykola Ternyuk, International Academy of Science and Innovation Technologies Koltsova blvd., 14-E, Kyiv, Ukraine, 03148

Doctor of Technical Sciences, Professor, President

Наnna Bilovol, Ukrainian State University of Railway Transport Feierbakha sq., 7, Kharkіv, Ukraine, 61050

PhD, Associate Professor

Department of Heat Engineering, Heat Engines and Energy Management

References

  1. Faupel, M. L., Stephens. J. D., Nathanson, S. D., Doe, K. E., Hagstrom, S. E. (1995). Pat. No. US5678547A. Method and apparatus for screening or sensing bodily conditions using DC biopotentials. No. 429,138. declareted: 26.04.1995; published: 21.11.1997. Available at: https://patentimages.storage.googleapis.com/e5/ed/01/87e3c1719e5af2/US5678547.pdf
  2. Stoller, K. P., Taff, B. E. (1983). Pat. No. US4557271A. Method and apparatus for detecting body illness, dysfunction, disease and/or pathology. No. 493,707. declareted: 11.05.1983; published: 20.12.1985. Available at: https://patentimages.storage.googleapis.com/c1/29/31/b8e890322f6349/US4557271.pdf
  3. Dobrorodnia, H., Vуsotska, O., Georgiyants, M., Balym, Y., Rak, L., Kolesnikova, O. et. al. (2018). Development of an approach to mathematical description of imbalance in methabolic processes for its application in the medical diagnostic information system. Eastern-European Journal of Enterprise Technologies, 5 (2 (95)), 29–39. doi: https://doi.org/10.15587/1729-4061.2018.141451
  4. Yakubovska, S., Vуsotska, O., Porvan, A., Yelchaninov, D., Linnyk, E. (2016). Developing a method for prediction of relapsing myocardial infarction based on interpolation diagnostic polynomial. Eastern-European Journal of Enterprise Technologies, 5 (9 (83)), 41–49. doi: https://doi.org/10.15587/1729-4061.2016.81004
  5. Vуsotska, O., Dobrorodnia, G., Gordiyenko, N., Klymenko, V., Chovpan, G., Georgiyants, M. (2016). Studying the mechanisms of formation and development of overweight and obesity for diagnostic information system of obesity. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 15–23. doi: https://doi.org/10.15587/1729-4061.2016.85390
  6. Vysotska, O. V., Bespalov, Y. G., Pecherska, A. I., Koval, S. M., Lytvynova, O. M., Dyvak, A. M. et. al. (2019). Mathematical simulation of the structure of pulsed arterial pressure relations with vascular damage factors in patients with arterial hypertension. Information Technology in Medical Diagnostics II, 47–53. doi: https://doi.org/10.1201/9780429057618-7
  7. Ohorodnyk, I. M., Krutov, V. V., Semenov, V. P., Terniuk, M. E. (2018). Pat. No. 128776 UA. Sposib vidnovlennia funktsionalno-fiziolohichnoho stanu liudyny. published: 10.10.2018.
  8. Gaev, J. A. (2011). Review of “Handbook of Human Factors in Medical Device Design”, edited by Matthew B. Weinger, Michael E. Wiklund and Daryle J. Gardner-Bonneau, Assistant Editor Loir M. Kelly. BioMedical Engineering OnLine, 10 (1), 46. doi: https://doi.org/10.1186/1475-925x-10-46
  9. Fernandez-Vargas, J., Pfaff, H. U., Rodríguez, F. B., Varona, P. (2013). Assisted closed-loop optimization of SSVEP-BCI efficiency. Frontiers in Neural Circuits, 7. doi: https://doi.org/10.3389/fncir.2013.00027
  10. Ronicke, S., Hirsch, M. C., Türk, E., Larionov, K., Tientcheu, D., Wagner, A. D. (2019). Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet Journal of Rare Diseases, 14 (1). doi: https://doi.org/10.1186/s13023-019-1040-6
  11. Sacco, G. M. (2005). Guided Interactive Diagnostic Systems. 18th IEEE Symposium on Computer-Based Medical Systems (CBMS’05). doi: https://doi.org/10.1109/cbms.2005.62
  12. Ahmed, U. T. (2018). Planar microwave devices for wideband microwave medical diagnostic and therapeutic systems. The University of Queensland. doi: https://doi.org/10.14264/uql.2018.142
  13. Bianchi, A. M., Mainardi, L. T., Cerutti, S. (2000). Time-frequency analysis of biomedical signals. Transactions of the Institute of Measurement and Control, 22 (3), 215–230. doi: https://doi.org/10.1177/014233120002200302
  14. Liang, H., Bronzino, J. D., Peterson, D. R. (Eds.) (2012). Biosignal Processing. Principles and Practices. CRC Press, 202. doi: https://doi.org/10.1201/b12941
  15. Vetrugno, R., Liguori, R., Cortelli, P., Montagna, P. (2003). Sympathetic skin response. Clinical Autonomic Research, 13 (4), 256–270. doi: https://doi.org/10.1007/s10286-003-0107-5
  16. Ditrih, Ya. (1981). Proektirovanie i konstruirovanie. Sistemniy podhod. Moscow: Mir, 456.
  17. Koller, R. (1976). Konstruktionsmethode für den Maschinen-, Geräte- und Apparatebau. Springer. doi: https://doi.org/10.1007/978-3-642-96295-0
  18. Buch, G. (1992). Obektno-orientirovannoe proektirovanie s primerami primeneniya. Moscow: Konkord, 519.
  19. Klir, Dzh. (1990). Sistemologiya. Avtomatizatsiya resheniya sistemnyh zadach. Moscow: Radio i svyaz', 534.
  20. Ternyuk, N. E. (2011). Sistema periodicheskih sistem ehlementov vidimogo material'nogo mira. Suchasni problemy nauky ta osvity: materialy 15-yi Mizhnarodnoi mizhdystsyplinarnoi naukovo-praktychnoi konferentsiyi. Alushta-Kharkiv, 11–22.
  21. Ternyuk, N. E. (2012). Zakony razvitiya tehniki i ih primenenie pri sozdanii innovatsiy. Suchasni problemy nauky ta osvity: materialy 16-yi Mizhnarodnoi mizhdystsyplinarnoi naukovo-praktychnoi konferentsiyi. Yevpatoriya-Kharkiv, 74–86.
  22. Belovol, A. V., Ternyuk, N. E. (2003). Sintez sposobov upravleniya proizvoditel'nost'yu polifunktsional'nyh mashin i ih sistem. Visnyk Skhidnoukrainskoho natsionalnoho universytetu im. V. Dalia, 12, 7–9.
  23. Dmitruk, I. A., Kogut, R. Y., Pechenik, A. N. et. al. (2012). Sintez polnogo mnozhestva obshchih struktur sposobov povysheniya ehnergoehffektivnosti proizvodstva. Komun. hospod. mist: naukovo-tekhn. zbirnyk, 109, 96–106.
  24. Terniuk, Y. A., Sorokyn, V. F. (2016). Utilizing the discrete and continual 3-D models of the limiting contours clusters during developing manufacturing routes for machining gas turbine engine compressors and turbines blisks blades. Otkrytye informatsionnye i komp'yuternye integrirovannye tehnologi, 72, 249–259.

Downloads

Published

2019-08-16

How to Cite

Ogorodnyk, I., Vуsotska O., Ternyuk, M., & Bilovol Н. (2019). Development of the method of structural and parametric synthesis of the Quanton diagnostic and health complex. Eastern-European Journal of Enterprise Technologies, 4(9 (100), 42–51. https://doi.org/10.15587/1729-4061.2019.176174

Issue

Section

Information and controlling system