Physical and technological aspects of multicharge implantation of gallium arsenide in device and circuit structures
DOI:
https://doi.org/10.15587/1729-4061.2013.18109Keywords:
ion doping, multi-charge additives, semi-insulating gallium arsenideAbstract
The development of microelectronics in Ukraine was accompanied by altering of four generations of ion implantation equipment. Nowadays, ion implantation devices of three classes of small and medium doses, high doses and high energies, are used for micro-, opto- and nanoelectronics. For many years, double-chamber ''Vezuviy-3'' and its modified version ''Vezuviy-3M'', with drum-type receiving units and electrostatic ion beam scanning, have been the most popular among light-dose devices. Despite its reasonable price, it has high efficiency (300 plates mm per hour), high implantation heterogeneity ( over a plate) and performance reliability (availability factor was). High dose devices ''Vezuviy-4'' and ''Vezuviy-8'' of the 70-80s and their modified versions, with combined mechanical and electro-magnetic scanning, were produced using ion beam post-acceleration and receiving unit, which was both at high and ground potentials. The development of high-energy implantation was based on using multi-charge ions (2-4) of the main dopants. The energies below 2 MeB at total accelerating voltage 400 KeB and ion beam current below 1mА and below 0,3 mА were recorded in one of modified versions of high-energy implantation ''Vezuviy-9''. It was the starting point of decreasing radiation defects in BIC structures.References
- Симонов, В. В. Оборудование ионной имплантации [Текст] / В. В. Симонов, Л. В. Корнилов. – М.: Радио и связь, 1988. – 354с.
- Риссел, Х. Ионная имплантация [Текст] / Х. Риссел, И. Руге. – М.:Наука, 1983. – 360с.
- Болтакс, Б. И. Глубокие центри в, связание с собственними структурними дефектами [Текст] / Б. И. Болтакс, М. Н. Колотов, Е. А. Скоретина. - Известия вузов. Физика, 1983. – 10с.
- Афанасєв, В. А. Оборудование для импульсной термообработки полупроводникових материалов [Текст] / В. А. Афанасєв, М. П. Духвський, Г. А. Красов. - Електроника СВЧ, 1984. - 56-58с.
- Окамото, Т. Устройства ионной имплантации [Текст] / Т. Окамото. - Саймицу кикай, 1985. - 1322-1325с.
- Черилов, А. В. Исследование електрофизических характеристик ионнолегированих слоев [Текст] / А. В. Черилов - Електронная техника, 1984. -8-12с.
- Данилов, Ю. А. Електрофизические свойства слоев, получених имплантацией [Текст] / Ю. А. Данилов, П. В. Павлов, Е. А. Питиримова. - ФТП, 1984. - 1673-1678с.
- Риз, Дж. Полуизолирующие соеденения [Текст] / Дж. Риз. – М.: Металургия, 1984. – 410с.
- Новосядлий, С. П. Суб - наномікрона технологія структур ВІС [Текст] / С. П. Новосядлий. - Івано-Франківськ Місто НВ, 2010. - 456с.
- Новосядлий, С.П. Фізико-технологічні основи субмікронної технології ВІС [Текст] / С.П. Новосядлий. - Івано-Франківськ : Сімка, 2003. - 52-54с.
- Simon, V. V. Kornilov, L. (1988). Equipment of ion implantation. Radio and Communications, 354.
- Ryssel, H., Ruge, I. (1983). Ion implantation. Science, 360.
- Boltaks, B. I., Kolotov, M. N., Skoretyna, E. A. (1983). Deep centers in gallium arsenide tied up with their own structural defects. Physics, № 10.
- Afanasiev, V. A., Duhvskyy, M., Krasov, G. A. (1984). Equipment for impulse heat treatment of semiconductor materials, Microwave Electronics, 56-58.
- Okamoto, T. (1985). Devices of ion implantation. Saymitsu Kikai, 1322-1325 .
- Cherylov, A. V. (1984). Investigation of electro-physical characteristics of iondoped layers . Electronic equipment, 8-12 .
- Danilov, Y. A., Pavlov, P., Pytyrymova, E. A. (1984). Electro-physical properties of layers obtained by ion implantation of carbon. PTP, 1673-1678 .
- Reese, J. (1984). Semi insulating connections . Metallurgy, 410.
- Novosyadlyy, S. P. (2010). Subnanomykron technology structures LSI. Ivano-Frankivsk City NV, 456.
- Novosyadlyy, S. P. (2003). Physical and technological bases submicron VLSI. Ivano-Frankivsk Seven, 52-54.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Степан Петрович Новосядлий, Тарас Петрович Кіндрат, Любомир Васильович Мельник
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.