Methods for the analysis of dynamic structures of telecommunication systems

Authors

  • Вадим Сергеевич Волотка Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine
  • Владимир Владимирович Поповский Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.18422

Keywords:

appreciations, convergence, stability, equation of observations, space of levels

Abstract

Mathematical models of connectivity of the system associated with the network structures for their reliability are considered. For static systems in where the connection matrix consists of the probability characteristics, the rate of the connection is defined as a stochastic estimation. For complex systems, the calculation of this index has the NP-complexity. Therefore, the evaluation of connectivity is calculated from the approximate methods. Such techniques such as assessment Ezary-Proschan and Polesski and others are known. For dynamic systems the connected component is of fundamental importance because it is the mutual coupling between elements of the system ensure the acquisition highly-integrated properties of emergence. As a model of a dynamic system the equation of state of a shaping filter or basic differential model Chebotarev-Agaev is considered. Besides, the latter is adequately reduced to an equation of stochastic approximation, a simplified version of which is used in telecommunication technologies to assess the round-trip time RTT, RED algorithms and others. Evaluation of the status and results of the analysis for the different connections between the elements are presented.

Author Biographies

Вадим Сергеевич Волотка, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Assistant department of Telecommunication systems

Владимир Владимирович Поповский, Kharkiv National University of Radio Electronics Lenina 14, Kharkov, Ukraine, 61166

Professor department of Telecommunication systems

References

  1. Richard, J. Trudeau. Introduction to graph theory [Text] / J. Richard // Dover publications. – Inc. New York, 1993. – 212 p.
  2. Esazy, J. Coherent Structures of Non-Idential Components [Text] / J. Esazy, F. Proshkan // Technometrics. – 1963. – Vol.5, №2. – Р. 191–309.
  3. Полесский, В. П. Оценки вероятности связности случайного графа [Текст] / В. П. Полесский // Проблемы передачи информации. – 1990. – Т.26, №1. С. 90–101.
  4. Bernstein, P. Middleware: A Model for Distributed System Services [Text] / P. Bernstein // Commun. ACM. – Feb. 1996. – Vol. 39, №2. – P. 87–98.
  5. Чеботарев, П. Ю. Согласование характеристик в многоагентных системах и спектры лапласовских матриц орграфов [Текст] / П. Ю. Чеботарев, Р. П. Агаев // Автоматика и телемеханика. – 2009. – №3. – С. 136–152.
  6. Boyd, S. Linear matrix inequality in system and control theory [Text] / S. Boyd, L. E. Chaoui, E. Feron, V. Balakrishnan // SIAM. Philadelphia. – 1994.
  7. Джунсов, И. А. Синхронизация в сетях линейных агентов с обратными связями по выходам [Текст] / И. А. Джунсов, А. Л. Фрадков // Автоматика и телемеханика. – 2011. – №8. – С. 41–52.
  8. Gardner, M. R. Connectance of large dynamic (cybernetic) systems: Critical values stability [Text] / M. R. Gardner, W. R. Assby // Nature. – 1970. – №228. – Р. 784.
  9. Popovskij, V. Control and Adaptation in Telecommunication Systems. Mathematical Foundations [Text] / V. Popovskij, A. Barkalov, L. Titarenko // Springer-Verlag. Berlin. – 2011. – 173 p.
  10. Grewal, M. S. Kalman Filtering: Theory and Practice. [Text] / M. S. Grewal, A. P. Andrews // New Jersey: Prentice-Hall. – 1993. – P. 381.
  11. Невельсон, М. Б., Хасьминский, Р. З. Стохастическая аппроксимация и рекуррентное оценивание [Текст] / М. Б. Невельсон, Р. З. Хасьминский. – М. : Наука, 1972. – 298 с.
  12. Richard, J. (1993). Trudeau. Introduction to graph theory. Dover publications, Inc. New York, 212.
  13. Esazy, J., Proshkan, F. (1963). Coherent Structures of Non-Identical Components. Technometrics. Vol. 5, №2, 191–309.
  14. Polesskiy, V. P., (1990). Estimates of the probability of connectedness of a graph. Problems of Information Transmission, V.26, № 1, 90–101.
  15. Bernstein, P. (1996). Middleware: A Model for Distributed System Services. Commun. ACM. Vol. 39, №2. 87–98.
  16. Chebotarev, P. Yu., Agaev, R. P. (2009). Coordination characteristics in multi-agent systems and the spectra of Laplace matrices of digraphs. Automation and body-mechanics, 3, 136–152.
  17. Boyd, S., Chaoui, L. E., Feron, E., Balakrishnan, V. (1994).Linear matrix inequality in system and control theory. SIAM. Philadelphia.
  18. Junsov, I. A., Fradkov, A. L. (2011). Synchronization in networks of agents with linear output feedback. Automation and Remote Control, 8, 41–52.
  19. Gardner, M. R., Assby, W. R. (1970). Connectance of large dynamic (cybernetic) systems: Critical values stability. Nature. №228. 784.
  20. Popovskij, V., Barkalov, A., Titarenko, L. (2011). Control and Adaptation in Telecommunication Systems. Mathematical Foundations. Springer-Verlag. Berlin. 173.
  21. Grewal, M. S., Andrews, A. P. (1993). Kalman Filtering: Theory and Practice. New Jersey: Prentice-Hall. 381.
  22. Nevelson, M. B., Khas'minskii, R. Z. (1972). Stochastic approximation and recursive estimation. Moscow: Nauka, 298.

Published

2013-10-30

How to Cite

Волотка, В. С., & Поповский, В. В. (2013). Methods for the analysis of dynamic structures of telecommunication systems. Eastern-European Journal of Enterprise Technologies, 5(2(65), 18–22. https://doi.org/10.15587/1729-4061.2013.18422