Development of the web portal for research support in the area of electrical impedance tomography

Authors

  • Grayr Aleksanyan Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428, Russian Federation https://orcid.org/0000-0001-9611-6275
  • Andrey Katsupeev Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428, Russian Federation https://orcid.org/0000-0002-7021-4114
  • Andrey Sulyz Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428, Russian Federation https://orcid.org/0000-0001-8681-730X
  • Stanislav Pyatnitsin Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428, Russian Federation https://orcid.org/0000-0002-2451-6832
  • Danil Peregorodiev Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428, Russian Federation https://orcid.org/0000-0002-2855-9207

DOI:

https://doi.org/10.15587/1729-4061.2019.184318

Keywords:

electrical impedance tomography, software, image reconstruction, medical imaging, conductivity distribution

Abstract

The concept of electrical impedance tomography is considered. Modern software solutions implementing the methods and algorithms of electrical impedance tomography are studied. It is concluded that existing solutions for applied research and development in the field of electrical impedance tomography either do not implement differential reconstruction methods, or do not provide multi-user access. This imposes a number of limitations when conducting research and creates barriers to obtaining new results in the field of electrical impedance tomography. Given the current state of development of scientific and engineering aspects of electrical impedance tomography, as well as arising problems and limitations, it is proposed to develop a specialized web portal that would systematize and accumulate the results already achieved in the field of electrical impedance tomography and offer researchers new opportunities for designing algorithmic and technical tools.

A key feature of the proposed web portal is the ability of users to remotely solve the main task of electrical impedance tomography (reconstruction and visualization of the conduction field) based on the downloaded measurement information by differential reconstruction.

The structure of the developed web portal is presented, including the following services: differential reconstruction service, media content storage service, knowledge base. In addition to using existing algorithms, the web portal has the ability to create and test the algorithm added by the user. The proposed testing algorithm will allow changing the parameters of the image reconstruction method in such a way as to provide the most flexible approach to solving a specific problem. A feature of the testing algorithm is the implementation of algorithms for comparing the accuracy of reconstruction of the conduction field. Comparison can be made both on the data provided by the portal, and on the data downloaded by the user. The results of experiments on the time of solving the problem with various models used for image reconstruction based on the obtained potential values during measurements are presented

Author Biographies

Grayr Aleksanyan, Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428

PhD, Associate professor

Department of Information and Measurement Systems and Technology

Andrey Katsupeev, Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428

Senior Lecturer

Department of Information and Measurement Systems and Technology

Andrey Sulyz, Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428

Department of Information and Measurement Systems and Technology

Stanislav Pyatnitsin, Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428

Department of Information and Measurement Systems and Technology

Danil Peregorodiev, Platov South-Russian State Polytechnic University (NPI) Prosveshcheniya str., 132, Novocherkassk, Russian Federation, 346428

Department of Information and Measurement Systems and Technology

References

  1. Pekker, Ya. S., Brazovskiy, K. S., Usov, V. N. (2004). Elektroimpedansnaya tomografiya. Tomsk: NTL, 192.
  2. Draeger medical. Technical Data for PulmoVista 500 (2011).
  3. Electrical impedance tomography. Available at: http://www.eit.org.uk/about.html
  4. Elektroimpedansnaya tomografiya (EIT). Available at: http://www.cplire.ru/rus/etomo/
  5. Zheng, J., Peng, L. (2017). A platform for electrical capacitance tomography large-scale benchmark dataset generating and image reconstruction. 2017 IEEE International Conference on Imaging Systems and Techniques (IST). doi: https://doi.org/10.1109/ist.2017.8261465
  6. COMSOL Multiphysics® v. 5.4. Available at: https://www.comsol.com/
  7. Kryszyn, J., Wanta, D., Kulpanowski, P., Smolik, W. T. (2018). LabVIEW based data acquisition system for electrical capacitance tomography. 2018 International Interdisciplinary PhD Workshop (IIPhDW). doi: https://doi.org/10.1109/iiphdw.2018.8388388
  8. Yang, Y., Jia, J. (2017). A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging. Review of Scientific Instruments, 88 (8), 085110. doi: https://doi.org/10.1063/1.4999359
  9. Hidayat, I., Darpita, I. D., Wijaya, S. K., Prajitno, P. (2019). The development of magnetoacoustic tomography system with current injection. Proceedings of the 4th international symposium on current progress in mathematics and sciences (ISCPMS2018). doi: https://doi.org/10.1063/1.5132443
  10. Jang, G. Y., Ayoub, G., Kim, Y. E., Oh, T. I., Chung, C. R., Suh, G. Y., Woo, E. J. (2019). Integrated EIT system for functional lung ventilation imaging. BioMedical Engineering OnLine, 18 (1). doi: https://doi.org/10.1186/s12938-019-0701-y
  11. Aleksanyan, G. K., Shcherbakov, I. D., Kucher, A. I., Sulyz, A. V. (2018). Development of software monitoring module for multi-angle electric impedance tomography method research. MATEC Web of Conferences, 226, 02024. doi: https://doi.org/10.1051/matecconf/201822602024
  12. Liu, B., Yang, B., Xu, C., Xia, J., Dai, M., Ji, Z. et. al. (2018). pyEIT: A python based framework for Electrical Impedance Tomography. SoftwareX, 7, 304–308. doi: https://doi.org/10.1016/j.softx.2018.09.005
  13. EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software // URL: http://eidors3d.sourceforge.net.
  14. Dimas, C., Sotiriadis, P. P. (2018). Electrical impedance tomography image reconstruction for adjacent and opposite strategy using FEMM and EIDORS simulation models. 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST). doi: https://doi.org/10.1109/mocast.2018.8376604
  15. JSR 168: Portlet Specification. JSRs: Java Community Process. Available at: https://www.jcp.org/en/jsr/detail?id=168
  16. Elmanova, N. (2001). Web-portaly: klassifikatsiya i naznachenie. KOMP'YUTER PRESS, 2, 172–176.
  17. Voriyskiy, F. S. (2003). Informatika. Noviy sistematizirovanniy tolkoviy slovar'-spravochnik. Moscow: FIZMATLIT, 760.
  18. Mashnin, T. (2012). Web-servisy Java. Moscow: BHV-Peterburg, 560.
  19. Aleksanyan, G. K., Gorbatenko, N. I., Tarasov, A. D. (2014). Development of Hardware-Software Complex for Electrical Impedance Tomography of Biological Objects. Research Journal of Applied Sciences, 9, 1030–1033.
  20. Goryaninova, E. R., Pankov, A. R., Platonov, E. N. (2012). Prikladnye metody analiza statisticheskih dannyh. Moscow: Izdatel'skiy dom Vysshey shkoly ekonomiki, 310.
  21. Izmailov, A. F., Solodov, M. V. (2008). Chislennye metody optimizatsii. Moscow: FIZMATLIT, 320.
  22. Petrov, I. B., Lobanov, A. I. (2006). Lektsii po vychislitel'noy matematike. Moscow: BINOM, 523.
  23. Tyrtyshnikov, E. E. (2007). Matrichniy analiz i lineynaya algebra. Moscow: FIZMATLIT, 480.
  24. Kennet, R., Shlyusser, T. (2017). Avtostopom po Python. Moscow: Piter, 336.
  25. Berri, P. (2017). Izuchaem programmirovanie na Python. Moscow: Izdatel'stvo «E», 624.
  26. Obe, R., Hsu, L. (Eds.) (2014). PostgreSQL: Up and Running. O'Reilly Media, 234.
  27. Plyusy i minusy Django. Python 3. Available at: https://python-scripts.com/django-obzor
  28. ERD (OpenModelSphere) – kontseptual'naya model' dannyh. CyberPedia. Available at: https://cyberpedia.su/12xdf47.html
  29. Aleksanyan, G. K., Shcherbakov, I. D., Kucher, A. I., Volchenkov, E. A. (2018). Development of a power supply for multi-angle electric impedance tomography complex. MATEC Web of Conferences, 226, 02025. doi: https://doi.org/10.1051/matecconf/201822602025
  30. Karenovich Aleksanyan, G., Ivanovich Gorbatenko, N., Igorevich Kucher, A., Mikhailovich Shirokov, K., Nam Phong, C. (2015). Developing Principles and Functioning Algorithms of the Hardware-software Complex for Electrical Impedance Tomography of Biological Objects. Biosciences, Biotechnology Research Asia, 12, 709–718. doi: https://doi.org/10.13005/bbra/2251
  31. Gorbatenko, N., Aleksanyan, G., Grechikhin, V., Shirokov, K., Dubrov, V., Lankin, M. (2015). Development of a computer-based stand for testing algorithms of electrical impedance tomography. Research Journal of Applied Sciences, 10 (4), 173–175.

Downloads

Published

2019-12-13

How to Cite

Aleksanyan, G., Katsupeev, A., Sulyz, A., Pyatnitsin, S., & Peregorodiev, D. (2019). Development of the web portal for research support in the area of electrical impedance tomography. Eastern-European Journal of Enterprise Technologies, 6(2 (102), 6–15. https://doi.org/10.15587/1729-4061.2019.184318