Predicting reliability of structures GaP-SnO2 on the based of 3D model of their surface

Authors

  • Світлана Львівна Воропаєва Yuriy Fedkovych Chernivtsi National University 28 University street, Chernivtsi, Ukraine, 58000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2013.19683

Keywords:

3D modeling, UV radiation sensor, information-measuring system

Abstract

The application software of Math Lab package for 3D modeling of morphological characteristics of UV radiation sensor surface based on GaP was used. It was shown that using 3D modeling is a software tool, which allows to visualize heterogeneities of contacts both during their production and selective current control during their operation, analyze the design and technological features of their formation and generate recommendations on their structure improvement. Along with the studies of photoelectric and electro-physical characteristics of semiconductor sensors, 3D modeling of surface morphology of the photosensitive layer of sensors allows to determine the reasons of their degradation parameters and predict the reliability of further operation of the information-measuring system.

The revealed morphological surface heterogeneities of the studied UV sensors can be caused by local etching of layer after etching of, or formation of islet oxidizing forms on the  surface before applying.

Author Biography

Світлана Львівна Воропаєва, Yuriy Fedkovych Chernivtsi National University 28 University street, Chernivtsi, Ukraine, 58000

PhD in Engineering

Department of Computer System and Network

References

  1. Vorobets, G. I. Computer modelling of laser irradiation absorption in multilayer semiconductor structures [Tеxt] / Vorobets G. I., Vorobets O. I., Voropaeva S. L., Tanasyuk Yu. V.// Naukovy Visnyk Chernivetskogo Universitetu: Zbirnyk Naukovyh Prats. Vyp. 426: Fizyka. Elektronika. Thematic issue “Computer systems and components”. Part II. – Chernivtsi, 2008. – P.87-92.
  2. Vorobets, G. I. Fundamental and applied aspects of laser interaction with materials on the interface devices: computer modeling and experimental investigations [Tеxt] / G. I. Vorobets, O. I. Vorobets, S. L. Voropaeva, Yu. G. Dobrovolsky, T. A. Melnychuk // E-MRS 2005, Spring Meeting, Scientific Programme. May 31 – June 3, 2005. – SYMPOSIUM J. – P.J-5/19.
  3. Vorobets, G. I. Aging and degradation of aluminium-silicon structures with a Schottky barrier after a pulsed laser irradiation [Tеxt] / G. I. Vorobets, O. I. Vorobets, A. P. Fedorenko, A. G. Shkavro // Functional materials. – 2003. – Vol. 10, №3. – P.468-473.3.
  4. Vorobets, G. I. Laser manipulation of clusters, structural defects and nanoaggregates in barrier structures on silicon and binary semiconductors [Tеxt] / G. I. Vorobets, O. I. Vorobets, V. N. Strebegev // Applied Surface Science. – 2005. – 247. – P.590-601.
  5. Комащенко, В. Н. Селективные и широкополосные ультрафиолетовые сенсоры [Tекст] / В.Н. Комащенко, К. В. Колежук, Е. Ф. Венгер, Г. И. Шереметова, О. А. Мищук, А. В. Комащенко // Письма в ЖТФ. – 2002. – Том 28. – Вып. 19. – С. 32–36.
  6. Malik, A. A new high ultraviolet sensivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis [Tеxt] / A. Malik, A. Seco, E. Fortunator, R. Martins, B. Shabashkevich, S. Piroszenko // Semicond. Sci. Technol. – № 13. – 1998. – Р.102-107.
  7. Mandalapu, L. J. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy [Tеxt] / L. J. Mandalapu, F. X. Xiu, Z. Yang, J. L. Liu // Science Direct. Solid-State Electronics 51 — 2007. - р.1014-1017.
  8. Агекян, В. Ф. Оптоэлектронные явления в слоях, полученных нитрированием GaP и GaAs [Текст] / В. Ф. Агекян, В. И. Іванов-Омский, В. Н. Князевский, В. Ю. Рудь, Ю. В. Рудь // Физика и техника полупроводников. – 1998. - Том 32. – № 10. – С. 1203–1205.
  9. Рембеза, С. И. Микроструктура и физические свойства тонких пленок SnO2 [Текст] / С. И. Рембеза, Т. В. Свистова, Е. С. Рембеза, О. И. Борсякова // Физика и техника полупроводников. – 2001. – Том 35. – Вып. 7. – С. 796–800.
  10. Рембеза, С. И. Физические свойства пленок SnO2, обработанных некогерентным импульсным излучением [Текст] / С. И. Рембеза, Е. С.Рембеза, Т. В. Свистова, О. И. Борсякова // Физика и техника полупроводников. – 2006. Том 40. - Вып. 1. – С. 57–60.
  11. Vorobets, G. I., Vorobets, O. I., Voropaeva, S. L., Tanasyuk, Yu. V. (2008). Computer modelling of laser irradiation absorption in multilayer semiconductor structures. Naukovy Visnyk Chernivetskogo Universitetu. Thematic issue “Computer systems and components”, 426, Part II, 87-92.
  12. Vorobets, G. I., Vorobets, O. I., Voropaeva, S. L., Dobrovolsky, Yu. G., Melnychuk, T. A. (2005). Fundamental and applied aspects of laser interaction with materials on the interface devices: computer modeling and experimental investigations. E-MRS 2005, Spring Meeting, Scientific Programme, J-5/19.
  13. Vorobets, G.I., Vorobets, O.I., Fedorenko, A.P., Shkavro A.G. (2003) Aging and degradation of aluminium-silicon structures with a Schottky barrier after a pulsed laser irradiation Functional materials, Vol. 10, №3. 468-473.
  14. Vorobets, G. I., Vorobets, O. I., & Strebegev, V. N. (2005). Laser manipulation of clusters, structural defects and nanoaggregates in barrier structures on silicon and binary semi-conductors. Applied surface science, 247(1), 590-601.
  15. Komashchenko, V. N., Kolezhuk, K. V., Venher, E. F., Sheremetova, H. Y., Myshchuk, O. A., & Komashchenko, A. V. (2002). Selektyvnye y shyrokopolosnye ultrafyoletovye sensory. Pysma v ZhTF, 28(19).
  16. Malik, A., Sêco, A., Fortunato, E., Martins, R., Shabashkevich, B., & Piroszenko, S. (1998). A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis. Semiconductor science and technology, 13(1), 102.
  17. Mandalapu, L. J., Xiu, F. X., Yang, Z., & Liu, J. L. (2007). Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-state electronics, 51(7), 1014-1017.
  18. Ahekian, V. F., Yvanov–Omskyi, V. Y., Kniazevskyi, V. N., Rud, V. Iu., & Rud, Iu. V. (1998). Optoelektronnye yavlenyia v sloiakh, poluchennykh nytryrovanyem GaP y GaAs. Fyzyka y tekhnyka poluprovodnykov, 32(10), 1203-1205
  19. Rembeza, S. Y., Svystova, T. V., Rembeza, E. S., & Borsiakova, O. Y. (2001). Mykrostruktura y fyzycheskye svoistva tonkykh plenok SnO2. Fyzyka y tekhnyka poluprovodnykov, 35(7), 796-800.
  20. Rembeza, S. Y., Rembeza, E. S., Svystova, T. V., & Borsiakova, O. Y. (2006). Fyzycheskye svoistva plenok SnO. Fyzyka y tekhnyka poluprovodnykov, 40(1), 57-60

Published

2014-01-04

How to Cite

Воропаєва, С. Л. (2014). Predicting reliability of structures GaP-SnO2 on the based of 3D model of their surface. Eastern-European Journal of Enterprise Technologies, 6(12(66), 96–98. https://doi.org/10.15587/1729-4061.2013.19683

Issue

Section

Physical and technological problems of radio engineering devices, telecommunication, nano-and microelectronics