Estimation of effectiveness of control system by quality with the use of tool of fuzzy logic

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.20086

Keywords:

fuzzy logics, quality management system, membership function, fuzzy inference system

Abstract

The necessity for improving the efficiency assessment system for design products quality management system (QMS) in case of fuzzy input data was caused by a number of objective reasons. A high portion of subjective assessments and quality characteristics at QMS assessment complicates greatly an objective assessment of the system state with conventional methods. Therefore assessment of the system by means of fuzzy logics tools was proposed. In the course of the research an efficiency assessment model for QMS using fuzzy set theory was proposed: at the first stage of the research justified selection of mathematical apparatus for QMS efficiency assessment was made; at the second stage a system analysis of business process of several design companies was carried out for the purposes of system efficiency assessment and process group, processes and subprocesses of QMS were identified; at the third stage a system efficiency assessment model was built. At that, using a fuzzy clustering method, possible states of design products QMS were identified, hierarchical architecture of fuzzy inference system for assessment of QMS efficiency was determined, input, output and intermediate assessment data were described in terms of fuzzy logics. The contents of input and output indicators were determined. A membership function was assigned to each of them. Fuzzy system knowledge bases were developed with the assistance of the experts from design companies. Aggregation operation by min-max method was used for all 18 created blocks of production rules. A fuzzy model characterized by hierarchical pattern that allows to eliminate the subjective factor at determination of the weightage of some indicators when assessing QMS efficiency was developed in the course of the research. Assessment of intermediate efficiency indicators for processes and process groups is provided for better visualization and transparency of calculations. The use of the developed model improves adequacy of management decision-making in the field of quality management

Author Biography

Ірина Володимирівна Лазько, Eastern National University. Vladimir Dahl Kosmonavta, 18, Severodonetsk, Ukraine, 93400

Candidate of Technical Sciences

LTD "Khimtechnologya"

Group of standardization and management by quality

Institute of Continuing Education and Distance Learning

Northdonetsk department

References

  1. Лазько, І. В. До питання оцінення результативності системи управління якістю науково-дослідних установ [Текст] / І. В. Лазько // Cхідно-Європейський журнал передових технологій. – 2011. –№ 5/3 (53). – С. 21-25.
  2. Лазько, І. В. Управління невідповідностями в системі управління якістю проектів [Текст] / І. В. Лазько // Вісник Національного технічного університету «ХПІ». Збірник наукових праць. Серія «Нові рішення в сучасних технологіях». – 2012. - № 68 (974). – С. 141- 145.
  3. Лазько, І. В. Аналіз та оцінка супутних ризиків забезпечення якості проектної продукції [Текст] / І. В. Лазько // Cхідно-Європейський журнал передових технологій. – 2013. – № 2/10 (62). – С. 4 - 7.
  4. Настанова щодо управління якістю в проектах (ISO 10006:2003, ІDT): ДСТУ ІSO 10006:2005 [Текст]. – [Чинний від 2007-01-01]. - К: Держспоживстандарт України, 2007. – 27 с. – (Національний стандарт України).
  5. Zadeh, L. A. Fuzzy sets [Теxt] / L. A. Zadeh // Information and Control. – 1965. – Vol.8, № 3. – С. 338-353.
  6. Беллман, Р. Принятие решений в расплывчатых условиях [Текст] / Р. Беллман, Л. Заде. – М.: Мир, 1976. – С. 172-215.
  7. Кофман, А. Введение в теорию нечетких множеств [Текст] / А. Кофман; [пер. с франц.]. - М.: Радио и связь, 1982. – 432 с.
  8. Леоненков, А. В. Нечеткое моделирование среде MATLAB и fuzzyTECH [Текст] / А. В. Леоненков. – СПб.: БХВ Петербург, 2005. – 736 с.
  9. Аверкин, А.Н. Нечеткие множества в моделях управления и искусственного интеллекта [Текст] / А. Н. Аверкин, И. З. Батыршин, А. Ф. Блишун и др.; под ред. Д. А. Поспелова. – М.: Наука. Гл. ред. физ.-мат. лит, 1986. – 312 с.
  10. Штовба, С. Д. Проектирование нечётких систем средствами МАТLAB [Текст] / С. Д. Штовба. – М.: Горячая линия. Телеком, 2007. – 288 с.
  11. Dubois, D. Fuzzy sets logics and reasoning about knowledge [Теxt] / D. Dubois, H. Prade, F. P. Klemen // Applied logic series. Dordrecht: Kluwer Academic Publishers. – 1999. – № 15. – 423 с.
  12. Klir, G. J. Fuzzy sets, uncertainty, and information [Теxt] / G. J.Klir, T. A. Folger, N. J. Prentice Hall – Englewood Cliffs, 1988. – 355 с.
  13. Птускин, А. С. Нечеткие модели и методы в менеджменте: уч. пособие [Текст] / А. С.Птускин.–М.: Издательство МГТУ им. М.Э. Баумана, 2008.–216 с.
  14. Bojadziev, G. Fuzzy logic for business, finance and management [Теxt] / G. Bojadziev, M. Bojadziev // Advance in fuzzy systems – application and theory. – Singapore: World Scientific Publishing. – 1997. – Vol. 12 – 232 с.
  15. Bien, Z. Fuzzy logic and its applications to engineering, information sciences and intelligent systems [Теxt] / Z. Bien, K. C. Min // Theory and decision library. Dordrecht: Kluwer Academic Publishers. – 1995. – № 16. – 481 с.
  16. Asai, K. Fuzzy system for management [Теxt] / K. Asai – Amsterdam: IOS Press, 1995. – 192 с.
  17. Lootsma, F. A. Fuzzy logic for planning and decision making [Теxt] / F. A. Lootsma // Applied optimization. Dordrecht: Kluwer Academic.–1997.–№ 8. – 195 с.
  18. Вишнева, И. В. Математические модели в системе управления качеством высшего образования с использованием методов нечеткой логики [Текст] / И. В. Вишнева // Саратов: изд-во «Саратовский источник», 2010.–187 с.
  19. Lazko, I. V. (2011). Do pytannia otsinennia rezultatyvnosti systemy upravlinnia yakistiu naukovo-doslidnykh ustanov. Eastern-European Journal of Enterprise Technologies, 5/3 (53), 21-25.
  20. Lazko, I. V. (2012). Upravlinnia nevidpovidnostiamy v systemi upravlinnia yakistiu proektiv. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Zbirnyk naukovykh prats. Seriia «Novi rishennia v suchasnykh tekhnolohiiakh», 68 (974), 141- 145.
  21. Lazko, I. V. (2013). Analiz ta otsinka suputnykh ryzykiv zabezpechennia yakosti proektnoi produktsii. Eastern-European Journal of Enterprise Technologies, 2/10 (62), 4-7.
  22. Nastanova shchodo upravlinnia yakistiu v proektakh (ISO 10006:2003, IDT): DSTU ISO 10006:2005. (2007). Natsionalnyi standart Ukrainy, 27.
  23. Zadeh, L. A. (1965) Fuzzy sets. Information and Control, Vol. 8, № 3, 338-353.
  24. Bellman, R. (1976). Pryniatye reshenyi v rasplyvchatykh uslovyiakh. [v kn.: Voprosy analyza y protsedury pryniatyia reshenyi]. M.: Myr, 172-215.
  25. Kofman, A. (1982). Vvedenye v teoryiu nechetkykh mnozhestv. M.: Radyo y sviaz, 432.
  26. Leonenkov, A. V. (2005). Nechetkoe modelyrovanye srede MATLAB y fuzzy TECH. SPb.: BKhV Peterburh, 736.
  27. Averkyn, A. N., Batyrshyn, Y. Z., Blyshun, A. F. (1986). Nechetkye mnozhestva v modeliakh upravlenyia y yskusstvennoho yntellekta. M.: Nauka. Hl. red. fyz.-mat. lit., 312.
  28. Shtovba, S. D. (2007). Proektyrovanye nechetkykh system sredstvamy MATLAB. M.: Horiachaia lynyia. Telekom, 288.
  29. Dubois, D. (1999). Fuzzy sets logics and reasoning about knowledge. Applied logic series, 15, 423.
  30. Klir, G. J. (1988). Fuzzy sets, uncertainty, and information. N. J. Prentice Hall, Englewood Cliffs, 355.
  31. Ptuskyn, A. S. (2008). Nechetkye modely y metody v menedzhmente: uch. Posobye. M.: Yzdatelstvo MHTU im. M.E. Baumana, 216.
  32. Bojadziev, G. (1997). Fuzzy logic for business, finance and management. Advance in fuzzy systems – application and theory. Singapore: World Scientific Publishing, Vol. 12, 232.
  33. Bien, Z. (1995). Fuzzy logic and its applications to engineering, information sciences and intelligent systems. Theory and decision library, 16, 481.
  34. Asai, K. (1995). Fuzzy system for management. Amsterdam: IOS Press, 192.
  35. Lootsma, F. A. (1997). Fuzzy logic for planning and decision making. Applied optimization, 8, 195.
  36. Vyshneva, Y. V. (2010). Matematycheskye modely v systeme upravlenyia kachestvom vyssheho obrazovanyia s yspolzovanyem metodov nechetkoi logyky. Saratov: yzd-vo «Saratovskyi ystochnyk», 187.

Published

2014-02-17

How to Cite

Лазько, І. В. (2014). Estimation of effectiveness of control system by quality with the use of tool of fuzzy logic. Eastern-European Journal of Enterprise Technologies, 1(3(67), 47–53. https://doi.org/10.15587/1729-4061.2014.20086

Issue

Section

Control processes