A robomech class parallel manipulator with three degrees of freedom
DOI:
https://doi.org/10.15587/1729-4061.2020.203131Keywords:
parallel manipulator, RoboMech, cylindrical coordinate systems, Chebyshev and least–square approximationsAbstract
This paper presents the methods of structural-parametric synthesis and kinematic analysis of a parallel manipulator with three degrees of freedom working in a cylindrical coordinate system. This parallel manipulator belongs to a RoboMech class because it works under the set laws of motions of the end-effector and actuators, which simplifies the control system and improves its dynamics. Parallel manipulators of a RoboMech class work with certain structural schemes and geometrical parameters of their links. The considered parallel manipulator is formed by connecting the output point to a base using one passive and two active closing kinematic chains (CKC). Passive CKC have zero degree of freedom and it does not impose a geometrical constraint on the movement of the output point, so the geometrical parameters of the links of the passive CKC are freely varied. Active CKCs have active kinematic pairs and they impose geometrical constraints on the movement of the output point. The geometrical parameters of the links of the active CKCs are determined on the basis of the approximation problems of the Chebyshev and least-square approximations. For this, the equations of geometrical constraints are derived in the forms of functions of weighted differences, which are presented in the forms of generalized (Chebyshev) polynomials. This leads to linear iterative problems.
The direct and inverse problems of the kinematics of the investigated parallel manipulator are solved. In the direct kinematics problem, the coordinates of the output point are determined by the given position of the input links. In the inverse kinematics problem, the positions of the input links are determined by the coordinates of the output point. The direct and inverse problems of the kinematics of the investigated parallel manipulator are reduced to solving problems on the positions of Sylvester dyads. Numerical results of structural-parametric synthesis and kinematic analysis of the considered parallel manipulator are presented. The numerical results of the kinematic analysis show that the maximum deviation of the movement of the output point from the orthogonal trajectories is 1.65 %References
- Baigunchekov, Z., Kalimoldayev, M., Ibrayev, S., Izmambetov, M., Baigunchekov, T., Naurushev, B., Aisa, N. (2016). Parallel Manipulator of a Class RoboMech. Mechanism and Machine Science, 547–557. doi: https://doi.org/10.1007/978-981-10-2875-5_45
- Baigunchekov, Z., Ibrayev, S., Izmambetov, M., Baigunchekov, T., Naurushev, B., Mustafa, A. (2019). Synthesis of Cartesian Manipulator of a Class RoboMech. Mechanisms and Machine Science, 69–76. doi: https://doi.org/10.1007/978-3-030-00365-4_9
- Baigunchekov, Z., Izmambetov, M., Zhumasheva, Z., Baigunchekov, T., Mustafa, A. (2019). Parallel manipulator of a class RoboMech for generation of horizontal trajectories family. Mechanisms and Machine Science, 1395–1402. doi: https://doi.org/10.1007/978-3-030-20131-9_137
- Assur, L. V. (1913). Investigation of Plane Hinged Mechanisms with Lower Pairs from the Point of View of their Structure and Classification (in Russian): Part I. Bull. Petrograd Polytech. Inst., 20, 309–386.
- Assur, L. V. (1914). Investigation of Plane Hinged Mechanisms with Lower Pairs from the Point of View of their Structure and Classification (in Russian): Part II. Bull. Petrograd Polytech. Inst., 21, 187–283.
- Yang, T.-L., Sun, D.-J. (2012). A General Degree of Freedom Formula for Parallel Mechanisms and Multiloop Spatial Mechanisms. Journal of Mechanisms and Robotics, 4 (1). doi: https://doi.org/10.1115/1.4005526
- Kutzbach, K. (1933). Einzelfragen aus dem Gebiet der Maschinenteile. Zeitschrift der Verein Deutscher Ingenieur, 77, 1168–1169.
- Meng, X., Gao, F., Wu, S., Ge, Q. J. (2014). Type synthesis of parallel robotic mechanisms: Framework and brief review. Mechanism and Machine Theory, 78, 177–186. doi: https://doi.org/10.1016/j.mechmachtheory.2014.03.008
- Burmester, L. (1988). Lehrbuch der Kinematik. Leipzig.
- Schoenflies, A. (1886). Geometric der Bewegung in Synthetischer Darstellung. Leipzig.
- Bottema, O., Roth, B. (1979). Theoretical Kinematics. North-Holland Publishing Company, 558.
- Chebyshev, P. L. (1879). Sur Les Parallélogrammes Composés de Trois Éléments Quelconques. Mémoires de l’Académie des Sciences de Saint-Pétersbourg, 36, Suppl. 3.
- Levitskii, N. I. (1950). Design of Plane Mechanisms with Lower Pairs. Moscow-Leningrad, 182.
- Sarkisyan, Y. L., Gupta, K. C., Roth, B. (1973). Kinematic Geometry Associated With the Least-Square Approximation of a Given Motion. Journal of Engineering for Industry, 95 (2), 503–510. doi: https://doi.org/10.1115/1.3438183
- Sarkissyan, Y. L., Gupta, K. C., Roth, B. (1973). Spatial Least-Square Approximation of a Motion. IFFToM Int. Symposium on Linkages and Computer Design Methods. Vol. B. Bucharest, 512–521.
- Sarkisyan, Y. L., Gupta, K. C., Roth, B. (1979). Chebychev Approximations of Finite Point Sets with Application to Planar Kinematic Synthesis. Journal of Mechanical Design, 101 (1), 32–40. doi: https://doi.org/10.1115/1.3454021
- Sarkisyan, Y. L., Gupta, K. C., Roth, B. (1979). Chebychev Approximations of Spatial Point Sets Using Spheres and Planes. Journal of Mechanical Design, 101 (3), 499–503. doi: https://doi.org/10.1115/1.3454084
- McCarthy, J. M., Bodduluri, R. M. (2000). Avoiding singular configurations in finite position synthesis of spherical 4R linkages. Mechanism and Machine Theory, 35 (3), 451–462. doi: https://doi.org/10.1016/s0094-114x(99)00005-1
- Plecnik, M. M., Michael McCarthy, J. (2015). Computational Design of Stephenson II Six-Bar Function Generators for 11 Accuracy Points. Journal of Mechanisms and Robotics, 8 (1). doi: https://doi.org/10.1115/1.4031124
- Plecnik, M. M., McCarthy, J. M. (2016). Design of Stephenson linkages that guide a point along a specified trajectory. Mechanism and Machine Theory, 96, 38–51. doi: https://doi.org/10.1016/j.mechmachtheory.2015.08.015
- Plecnik, M. M., McCarthy, J. M. (2016). Kinematic synthesis of Stephenson III six-bar function generators. Mechanism and Machine Theory, 97, 112–126. doi: https://doi.org/10.1016/j.mechmachtheory.2015.10.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Azamat Mustafa, Zhumadil Baigunchekov, Tarek Sobh, Sarosh Patel, Muratulla Utenov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.