Validation of emulsifying properties of semi-finished product based on low-lactose milk whey

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.204588

Keywords:

low-lactose condensed semi-finished product, emulsifying properties, effective viscosity, inversion resistance.

Abstract

This paper presents rheological and organoleptic studies of emulsion systems using a semi-finished product based on condensed low-lactose whey and fermented pumpkin pulp puree (SPCLLW). The positive influence of SPCLLW on the structure of emulsion systems was found, which was confirmed by expert sensory evaluation. The research confirms the component compatibility of SPCLLW and vegetable oil as a part of emulsion systems. This paper scientifically proves the influence of technological factors on the parameters of emulsification of a semi-finished product based on condensed low-lactose whey and fermented pumpkin pulp to ensure its target properties as an emulsifier and stabilizer in the technology of emulsion sauces. The experiments revealed the change in the quantitative values of the determinants of emulsion systems, such as viscosity and inversion stability, depending on the values of the pH of the medium, the emulsification temperature, the rate of oil dripping and the rotation of the working body of the mixer. It was proved that the acidification of the medium increases the viscosity of the emulsion system, therefore it is advisable to use SPCLLW in the composition of salty sauces of the emulsion type. There is a direct relationship between the manifestations of inversion instability and the increase in temperature of the emulsification process. The research reveals the inversely proportional effect of the rotation speed of the working body of the mixer on the increase in viscosity of the studied systems. Mathematical optimization is carried out for certain ranges of numerical values of parameters of separate indicators of the technological process. Rational parameters of the emulsification process are determined: temperature index – 18 °С, emulsification rate – 0.09…0.11 ml/s, pH from 5.0 to 5.5, rotation speed of the working organism of the mixer – 500 rpm. The research confirms the possibility of using SPCLLW as a part of emulsion systems, in particular sauces of emulsion type.

Author Biographies

Victoriya Gnitsevych, Kyiv National University of Trade and Economics Kyoto str., 19, Kyiv, Ukraine, 02156

Doctor of Technical Sciences, Professor

Department of Technologies and Organization of Restaurant Business

Tatiana Yudina, Kyiv National University of Trade and Economics Kyoto str., 19, Kyiv, Ukraine, 02156

Doctor of Technical Sciences, Professor

Department of Technologies and Organization of Restaurant Business

Yuliia Honchar, Kyiv National University of Trade and Economics Kyoto str., 19, Kyiv, Ukraine, 02156

Postgraduate Student

Department of Technologies and Organization of Restaurant Business

Olena Vasylieva, Kyiv National University of Trade and Economics Kyoto str., 19, Kyiv, Ukraine, 02156

PhD, Associate Professor

Department of Technologies and Organization of Restaurant Business

Liudmyla Diachuk, Kyiv National University of Trade and Economics Kyoto str., 19, Kyiv, Ukraine, 02156

PhD, Associate Professor

Department of Foreign Philology and Translation

References

  1. Böhn, L., Störsrud, S., Liljebo, T., Collin, L., Lindfors, P., Törnblom, H., Simrén, M. (2015). Diet Low in FODMAPs Reduces Symptoms of Irritable Bowel Syndrome as Well as Traditional Dietary Advice: A Randomized Controlled Trial. Gastroenterology, 149 (6), 1399–1407.e2. doi: https://doi.org/10.1053/j.gastro.2015.07.054
  2. Peters, S. L., Yao, C. K., Philpott, H., Yelland, G. W., Muir, J. G., Gibson, P. R. (2016). Randomised clinical trial: the efficacy of gut-directed hypnotherapy is similar to that of the low FODMAP diet for the treatment of irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 44 (5), 447–459. doi: https://doi.org/10.1111/apt.13706
  3. Pedersen, N., Andersen, N. N., Végh, Z., Jensen, L., Ankersen, D. V., Felding, M. et. al. (2014). Ehealth: low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome. World Journal of Gastroenterology, 20 (43), 16215–16226. doi: https://doi.org/10.3748/wjg.v20.i43.16215
  4. Heizer, W. D., Southern, S., McGovern, S. (2009). The Role of Diet in Symptoms of Irritable Bowel Syndrome in Adults: A Narrative Review. Journal of the American Dietetic Association, 109 (7), 1204–1214. doi: https://doi.org/10.1016/j.jada.2009.04.012
  5. Böhn, L., Störsrud, S., Törnblom, H., Bengtsson, U., Simrén, M. (2013). Self-Reported Food-Related Gastrointestinal Symptoms in IBS Are Common and Associated With More Severe Symptoms and Reduced Quality of Life. American Journal of Gastroenterology, 108 (5), 634–641. doi: https://doi.org/10.1038/ajg.2013.105
  6. Hayes, P., Corish, C., O’Mahony, E., Quigley, E. M. M. (2013). A dietary survey of patients with irritable bowel syndrome. Journal of Human Nutrition and Dietetics, 27, 36–47. doi: https://doi.org/10.1111/jhn.12114
  7. Staudacher, H. M., Lomer, M. C. E., Anderson, J. L., Barrett, J. S., Muir, J. G., Irving, P. M., Whelan, K. (2012). Fermentable Carbohydrate Restriction Reduces Luminal Bifidobacteria and Gastrointestinal Symptoms in Patients with Irritable Bowel Syndrome. The Journal of Nutrition, 142 (8), 1510–1518. doi: https://doi.org/10.3945/jn.112.159285
  8. Choque Delgado, G. T., Tamashiro, W. M. da S. C. (2018). Role of prebiotics in regulation of microbiota and prevention of obesity. Food Research International, 113, 183–188. doi: https://doi.org/10.1016/j.foodres.2018.07.013
  9. Ooi, S. L., Correa, D., Pak, S. C. (2019). Probiotics, prebiotics, and low FODMAP diet for irritable bowel syndrome – What is the current evidence? Complementary Therapies in Medicine, 43, 73–80. doi: https://doi.org/10.1016/j.ctim.2019.01.010
  10. Gnitsevych, V., Chykun, N., Honchar, Y. (2017). Kinetics of fermentation of lactose whey. Commodities and Markets, 2, 97–104. Available at: http://tr.knteu.kiev.ua/files/2017/24(tom1)/12.pdf
  11. Gnitsevych, V., Honchar, Y. (2018). Investigation the process of fermentation of pumpkin pulp. Scientific Works of NUFT, 24 (2), 202–208. doi: https://doi.org/10.24263/2225-2924-2018-24-2-24
  12. Gnitsevych, V., Yudina, T., Gonchar, Yu. (2018). Technology of semi-finished product based on thickened low-lactose whey and pumpkin pulp. Commodities and Markets, 4, 105–114. doi: https://doi.org/10.31617/tr.knute.2018(28)10
  13. DSTU 4487:2005. Maionezy. Zahalni tekhnichni umovy (2006). Kyiv: Derzhspozhyvstandart, 27.
  14. Chassaing, B., Koren, O., Goodrich, J. K., Poole, A. C., Srinivasan, S., Ley, R. E., Gewirtz, A. T. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 519 (7541), 92–96. doi: https://doi.org/10.1038/nature14232
  15. Chang, C., Li, J., Li, X., Wang, C., Zhou, B., Su, Y., Yang, Y. (2017). Effect of protein microparticle and pectin on properties of light mayonnaise. LWT - Food Science and Technology, 82, 8–14. doi: https://doi.org/10.1016/j.lwt.2017.04.013
  16. Ma, Z., Boye, J. I. (2012). Advances in the Design and Production of Reduced-Fat and Reduced-Cholesterol Salad Dressing and Mayonnaise: A Review. Food and Bioprocess Technology, 6 (3), 648–670. doi: https://doi.org/10.1007/s11947-012-1000-9
  17. Charles, M., Rosselin, V., Beck, L., Sauvageot, F., Guichard, E. (2000). Flavor Release from Salad Dressings: Sensory and Physicochemical Approaches in Relation with the Structure. Journal of Agricultural and Food Chemistry, 48 (5), 1810–1816. doi: https://doi.org/10.1021/jf9906533
  18. Mirzanajafi-Zanjani, M., Yousefi, M., Ehsani, A. (2019). Challenges and approaches for production of a healthy and functional mayonnaise sauce. Food Science & Nutrition, 7, 2471–2484. doi: https://doi.org/10.1002/fsn3.1132
  19. Chung, C., Degner, B., McClements, D. J. (2014). Development of Reduced-calorie foods: Microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Research International, 56, 136–145. doi: https://doi.org/10.1016/j.foodres.2013.11.034
  20. Campbell, B. (2019). Current Emulsifier Trends in Dressings and Sauces. Food Emulsifiers and Their Applications, 285–298. doi: https://doi.org/10.1007/978-3-030-29187-7_9
  21. Bigdelian, E., Razavi, S. (2014). Evaluation of survival rate and physicochemical properties of encapsulated bacteria in alginate and resistant starch in mayonnaise sauce. Journal of Bioprocessing & Biotechniques, 4 (5). doi: https://doi.org/10.4172/2155-9821.1000166
  22. Liu, X., Guo, J., Wan, Z.-L., Liu, Y.-Y., Ruan, Q.-J., Yang, X.-Q. (2018). Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocolloids, 77, 168–175. doi: https://doi.org/10.1016/j.foodhyd.2017.09.032
  23. Nikzade, V., Tehrani, M. M., Saadatmand-Tarzjan, M. (2012). Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocolloids, 28 (2), 344–352. doi: https://doi.org/10.1016/j.foodhyd.2011.12.023
  24. Dolz, M., Hernández, M. J., Delegido, J. (2006). Oscillatory measurements for salad dressings stabilized with modified starch, xanthan gum, and locust bean gum. Journal of Applied Polymer Science, 102 (1), 897–903. doi: https://doi.org/10.1002/app.24125
  25. Sikora, M., Badrie, N., Deisingh, A. K., Kowalski, S. (2008). Sauces and Dressings: A Review of Properties and Applications. Critical Reviews in Food Science and Nutrition, 48 (1), 50–77. doi: https://doi.org/10.1080/10408390601079934
  26. Romanova, T. Y., Fedorova, T. P. (1997). Pat. No. 28805 UA. Emulsified sauce. No. u97094774; declareted: 25.09.1997; published: 16.10.2000, Bul. No. 5. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=77610
  27. Nykyforov, R., Gnitsevich, V. (2015). Rationale for the technology of emulsion sauces based on protein-carbohydrate semi-products. Eastern-European Journal of Enterprise Technologies, 3 (10 (75)), 15–19. doi: https://doi.org/10.15587/1729-4061.2015.43447
  28. Sun, C., Liu, R., Liang, B., Wu, T., Sui, W., Zhang, M. (2018). Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. Food Research International, 108, 151–160. doi: https://doi.org/10.1016/j.foodres.2018.01.036
  29. Nosenko, T. T., Bakhmach, V. O., Berdashkova, L. O. (2015). Pat. No. 105129 UA. Protein low-fat mayonnaise. No. u201507405; declareted: 23.07.2015; published: 10.03.2016, Bul. No. 5. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=221028
  30. Babenko, V. I., Bakhmach, V. O., Mank, V. V., Bardashkova, L. O. (2015). Pat. No. 103236 UA. Fast mayonnaise. No. u201505199; declareted: 27.05.2015; published: 10.12.2015, Bul. No. 23. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=218393
  31. Solodko, L. M., Samakhina, H. O., Shtanko, O. A. (2014). Pat. No. 97561 UA. Mayonnaise. No. u201409784; declareted: 05.09.2014; published: 25.03.2015, Bul. No. 6. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=211062
  32. Oseiko, M. I., Shevchyk, V. I., Remizova, K. O., Kovaliova, O. A. (2013). Pat. No. 86341 UA. Low-calorie mayonnaise with flavouring additives. No. u201308418; declareted: 04.07.2013; published: 25.12.2013, Bul. No. 24. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=195297
  33. Roik, M. V., Petik, P. F., Fediakina, Z. P., Shapovalova, I. Y., Kuznietsova, I. V. (2013). Pat. No. 82303 UA. "Stevia" mayonnaise. No. u201302237; declareted: 22.02.2013; published: 25.07.2013, Bul. No. 14. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=189804
  34. Brookfield programmable viscometer DV-II+PRO. Instructions for use. M/03-65.
  35. Kobzar, A. I. (2006). Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnyh rabotnikov. Moscow: FIZMATLIT, 816.
  36. Hussain, R., Gaiani, C., Jeandel, C., Ghanbaja, J., Scher, J. (2012). Combined effect of heat treatment and ionic strength on the functionality of whey proteins. Journal of Dairy Science, 95 (11), 6260–6273. doi: https://doi.org/10.3168/jds.2012-5416
  37. Tadros, T. F. (2016). Emulsions: Formation, Stability, Industrial Applications. De Gruyter. doi: https://doi.org/10.1515/9783110452242
  38. Maphosa, Y., Jideani, V. A. (2018). Factors Affecting the Stability of Emulsions Stabilised by Biopolymers. Science and Technology Behind Nanoemulsions. doi: https://doi.org/10.5772/intechopen.75308
  39. Depree, J. A., Savage, G. P. (2001). Physical and flavour stability of mayonnaise. Trends in Food Science & Technology, 12 (5-6), 157–163. doi: https://doi.org/10.1016/s0924-2244(01)00079-6

Downloads

Published

2020-06-30

How to Cite

Gnitsevych, V., Yudina, T., Honchar, Y., Vasylieva, O., & Diachuk, L. (2020). Validation of emulsifying properties of semi-finished product based on low-lactose milk whey. Eastern-European Journal of Enterprise Technologies, 3(11 (105), 21–29. https://doi.org/10.15587/1729-4061.2020.204588

Issue

Section

Technology and Equipment of Food Production