Soil sampling when examining forests for radioactive contamination

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.209873

Keywords:

137Cs, density of radioactive soil contamination, forest ecosystems, soil sampling

Abstract

Forest ecosystems are complex areas in terms of rehabilitation of radioactively contaminated areas, so conducting an up-to-date examination of these areas for radioactive contamination is relevant. The paper considers the improvement of methods of soil sampling for obtaining representative materials in the estimation of vertical migration of 137Cs in the soil profile and the level of soil contamination with 137Cs. The density of radioactive soil contamination was studied by reducing the number of selected samples from 30 to 3 in the layers of 10, 20, and 30 cm. The results show that when the number of soil samples decreases, the average magnitudes of soil contamination with 137Cs are not significantly different within each analyzed layer. It was noted that at sampling in the 10-centimeter layer, the studied indicator was 1.3–1.4 times lower than in the layers of 20 and 30 cm, and there is no difference between the latter. To obtain reliable levels of radioactive contamination of the territory, it is necessary to perform 10-time repeated sampling in the forest soil layer of 30 cm. At a decrease in the number of soil samples from 10 to 3, the fluctuation of average values of the specific activity of 137Cs in different layers of soil profile is low. To obtain representative magnitudes of 137Cs content in each layer of the soil profile, it is necessary to make various samplings. Thus, for 4-time repeated sampling, is sufficient for all layers of forest litter, and 6-time repeated sampling is enough for the humus-eluvial horizon. It is necessary to perform 8-time repeated sampling for the eluvial and illuvial horizon, and 10-time repeated sampling for illuvial sand and parent rock. The obtained results make it possible to carry out up-to-date examination of forests for radioactive contamination based on the updated methodology and using the obtained data on 137Cs migration in forest soils

Author Biographies

Viktoriia Melnyk, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

Assistant

Department of Ecology

Tatiana Kurbet, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate Professor

Department of Ecology

Zoia Shelest, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate Professor

Department of Ecology

Iryna Davydova, Zhytomyr Polytechnic State University Chudnivska str., 103, Zhytomyr, Ukraine, 10005

PhD, Associate Professor

Department of Ecology

References

  1. Tihomirov, F. A., Sidorov, V. P., Shcheglov, A. I. (1994). Les i lesnoe hozyaystvo v usloviyah radioaktivnogo zagryazneniya. Lesnoe hozyaystvo, 1, 26–29.
  2. Tikhomirov, F. A., Shcheglov, A. I., Sidorov, V. P. (1993). Forests and forestry: radiation protection measures with special reference to the Chernobyl accident zone. Science of The Total Environment, 137 (1-3), 289–305. doi: https://doi.org/10.1016/0048-9697(93)90395-m
  3. Shcheglov, A. I., Tihomirov, F. A., Tsvetnova, O. B., Klyashtorin, A. L., Mamihin S. V. (1996). Biogeohimiya radionuklidov chernobyl'skogo vybrosa v lesnyh ekosistemah evropeyskoy chasti SNG. Radiatsionnaya biologiya. Radioekologiya, 36 (4), 469–478.
  4. Kaletnyk, M. M., Landin, V. P. Krasnov, V. P. et. al. (1991). Radiolohichna obstanovka v lisakh Ukrainskoho Polissia. Oikumena, 2, 61–66.
  5. Kashparov, V. А. (2009). Radioecological significance of а fuel coмponent of cнernobyl radioacтive fallout. Problems of Chernobyl Exclusion Zone, 9, 5–22. Available at: http://uiar.org.ua/Russ/3.pdf
  6. Shcheglov, A. I., Tsvetnova, O. B. (2002). Ekologicheskaya rol' lesnyh podstilok pri radioaktivnom zagryaznenii. Aktual'nye problemy lesnogo kompleksa, 5, 151–153.
  7. Shcheglova, A. I., Tsvetnova, O. B. (2001). Rol' lesnyh ekosistem pri radioaktivnom zagryaznenii. Priroda, 4, 23–32. Available at: http://elib.biblioatom.ru/text/chernobyl-i-problemy-radiobiologii_2001/go,2/
  8. Boyko, O. L. (2012). Distribution of 137Cs total activity in forest phytocenoses. Lisivnytstvo i ahrolisomelioratsiya, 120, 87–94. Available at: http://forestry-forestmelioration.org.ua/index.php/journal/issue/view/13/120-pdf
  9. Krasnov, V. P., Kurbet, T. V., Davydova, I. V., Shelest, Z. M., Boyko, O. L. (2015). Vertical Distribution of 137Cs Total Activity in Forest Soils of Ukrainian Polissya. Scientific Bulletin of UNFU, 25.5, 123–129. Available at: https://nv.nltu.edu.ua/index.php/journal/article/view/1014
  10. Perevolotskiy, A. N. (2006). Raspredilenie 137Cs i 90Sr v lesnyh biogeotsenozah. Gomel': RNIUP «Institut radioekologii», 256.
  11. Krasnov, V. P., Kurbet, T. V., Shelest, Z. M., Boyko, A. L. (2015). 137Сs distribution in sod-podzol forest soil of Ukrainian Polissia. Nuclear Physics and Atomic Energy, 16(3), 247–253. doi: https://doi.org/10.15407/jnpae2015.03.247
  12. Melnyk, V., Kurbet, T. (2018). Current distribution of 137cs in sod-podzolic soils of different types of forest conditions. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 65–71. doi: https://doi.org/10.15587/1729-4061.2018.142613
  13. Gonze, M.-A., Calmon, P. (2017). Meta-analysis of radiocesium contamination data in Japanese forest trees over the period 2011–2013. Science of The Total Environment, 601-602, 301–316. doi: https://doi.org/10.1016/j.scitotenv.2017.05.175
  14. Bulko, N. I., Shabaleva, M. A., Kozlov, A. K. (2009). Osobennosti povedeniya 137Cs v sosnovyh nasazhdeniyah raznyh tipov lesa na territorii zapadnogo sleda avarii na ChAES. Vestnik MDPU imeni I. P. Shamyakina, 2 (23), 3–14. Available at: https://cyberleninka.ru/article/n/osobennosti-povedeniya-137cs-v-sosnovyh-nasazhdeniyah-raznyh-tipov-lesa-na-territorii-zapadnogo-sleda-avarii-na-chaes/viewer
  15. Bulko, N. I., Shabaleva, M. A., Mitin, N. V., Tolkacheva, N. V., Kozlov, A. K. (2015). Osobennosti dlitel'nyh protsessov migratsii chernobyl'skogo 137Cs v avtomorfnyh i gidromorfnyh pochvah sosnovyh fitotsenozov v dal'ney zone avarii na ChAES. Sb. nauch. Tr. IL NAN Belarusi, 75, 391–404.
  16. Bulko, N. I. (2009). Fiziko-himicheskoe sostoyaniya 137Cs v pochvah sosnovoy formatsii regionov s razlichnymi tipami chernobyl'skih vypadeniy spustya 20 let posle avarii na ChAES. Problemy lesovedeniya i lesovodstva, 69, 516–534.
  17. Bulko, N. I. (2014). Transformatsiya form nahozhdeniya 137Cs v pochvah nasazhdeniy razlichnogo sostava v dal'ney zone chernobyl'skoy katastrofy spustya chetvert' veka. Problemy lesovedeniya i lesovodstva, 74, 380–391.
  18. Krasnov, V. P., Kurbet, T. V., Korbut, M. B., Boiko, O. L. (2016). Rozpodil 137Cs u lisovykh ekosystemakh Polissia Ukrainy. Agroecological Journal, 1, 82–87. Available at: http://nbuv.gov.ua/UJRN/agrog_2016_1_14
  19. Markina, Z. N., Glazun, I. N. (2005). Raspredelenie fiziko-himicheskih pokazateley 137Cs po profilyu pochv lesnyh ekosistem zony otchuzhdeniya ChAES Bryanskoy oblasti. Problemy lesovedeniya i lesovodstva, 63, 487–489.
  20. Averin, V. S. et. al. (2007). Radioekologicheskie posledstviya CHernobyl'skoy avarii. 20 let posle Chernobyl'skoy katastrofy: posledstviya v Respublike Belarus' i ih preodolenie. Natsional'nyy doklad. Minsk: Komitet po problemam posledstviy katastrofy na CHernobyl'skoy AES pri Sovete Ministrov Respubliki Belarus', 13–35.
  21. Didenko, L. G. (2001). O soderzhanii i formah nahozhdeniya 137Cs i kaliya v hvoe i drevesine sosny. Problemy lesovedeniya i lesovodstva, 52, 150–157.
  22. Didenko, L. G. (2000). K voprosu o formah nahozhdeniya 137Cs v lesnyh pochvah. Problemy lesovedeniya i lesovodstva, 51, 223–228.
  23. Yoschenko, V., Nanba, K., Konoplev, A., Takase, T., Zheleznyak, M. (2015). Radiocesium distributions and fluxes in the forest ecosystems of Chernobyl and Fukushima. Geophysical Research Abstracts, 17, 235–241
  24. Pratama, H. A., Yoneda, M., Shimada, Y., Satoshi, F., Ikegami, M. (2019). Correlation between Different Type of Caesium Carrier in The Radiocaesium Interception Potential Measurement for Forest Soils. Journal of Physics: Conference Series, 1198 (2), 022026. doi: https://doi.org/10.1088/1742-6596/1198/2/022026
  25. Metodychni rekomendatsiyi «Vedennia silskoho hospodarstva v umovakh radioaktyvnoho zabrudnennia terytoriyi Ukrainy vnaslidok avariyi na Chornobylskiy AES na period 1999–2002 rr. (1998). Kyiv, 105.
  26. Deysan, M., Didkivskyy, M., Dankevych, Ye. et. al. (2011). Recommendations on agricultural production in the radioactive contamination of the northern regions of Zhytomyr, victims of the Chernobyl accident for 2011–2016. Zhytomyr: In-t silskoho hosp-va Polissia NAAN Ukrainy, 34. Available at: http://ir.znau.edu.ua/handle/123456789/4728
  27. Krasnov, V. P. (1998). Radioekolohiya lisiv Polissia Ukrainy. Zhytomyr: Volyn, 112.
  28. Krasnov, V. P., Orlov, O. O., Kurbet, T. V. (2010). Metodyka obstezhennia radiatsiyno zabrudnenykh lisiv z metoiu yikh reabilitatsiyi na period 2010–2015 rr. Zhytomyr, 16.
  29. Yasutaka, T., Naito, W. (2016). Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan. Journal of Environmental Radioactivity, 151, 512–520. doi: https://doi.org/10.1016/j.jenvrad.2015.05.012
  30. Evrard, O., Laceby, J. P., Nakao, A. (2019). Effectiveness of landscape decontamination following the Fukushima nuclear accident: a review. SOIL, 5 (2), 333–350. doi: https://doi.org/10.5194/soil-5-333-2019
  31. Kato, H., Onda, Y., Yamaguchi, T. (2018). Temporal changes of the ambient dose rate in the forest environments of Fukushima Prefecture following the Fukushima reactor accident. Journal of Environmental Radioactivity, 193-194, 20–26. doi: https://doi.org/10.1016/j.jenvrad.2018.08.009
  32. Almgren, S., Isaksson, M. (2009). Long-term investigation of anthropogenic and naturally occurring radionuclides at reference sites in western Sweden. Journal of Environmental Radioactivity, 100 (7), 599–604. doi: https://doi.org/10.1016/j.jenvrad.2009.04.009
  33. Khomutinin, Y., Levchuk, S., Protsak, V., Pavliuchenko, V., Kashparov, V. (2019). Prompt Mapping of Radioactively Contaminated Areas. Nuclear and Radiation Safety, 3 (83), 51–57. doi: https://doi.org/10.32918/nrs.2019.3(83).06
  34. Krasnov, V. P., Orlov, O. O., Landin, V. P. et. al. (2008). Rekomendatsiyi z vedennia lisovoho hospodarstva v umovakh radioaktyvnoho zabrudnennia. Kyiv: Derzhkomlishosp, 82.
  35. Pro zatverdzhennia Derzhavnoho hihienichnoho normatyvu "Hihienichnyi normatyv pytomoi aktyvnosti radionuklidiv (137)Cs ta (90)Sr u derevyni ta produktsiyi z derevyny". Zareiestrovano v Ministerstvi yustytsiyi Ukrainy 16 lystopada 2005 r. za N 1384/11664. Available at: https://zakon.rada.gov.ua/laws/show/z1384-05#Text
  36. DSTU ISO 10381-1:2004. Yakist gruntu vidbir prob. Chastyna 1. Nastanovy shchodo skladannia prohram vidbyrannia prob (2006). Kyiv: derzhspozhyvstandart Ukrainy, 62.
  37. Krasnov, V. P., Kurbet, T. V., Shelest, Z. M., Boiko, O. L. (2016). 137-Cs redistribution in time in wet bory and sugrudy soils in forests of Ukrainian Polissia. Nuclear Physics and Atomic Energy, 17 (1), 63–68. doi: https://doi.org/10.15407/jnpae2016.01.063
  38. Melnyk, V. V. (2019). Kolyvannia velychyn pytomoi aktyvnosti 137Cs u riznykh sharakh lisovykh gruntiv v umovakh svizhoho boru Ukrainskoho Polissia. Zbirnyk naukovykh prats II Vseukrainskoi naukovo-praktychnoi konferentsiyi. Ekolohichna bezpeka: suchasni problemy ta propozytsiyi. Vol. II. Kyiv: Interservis, 133–140.

Downloads

Published

2020-08-31

How to Cite

Melnyk, V., Kurbet, T., Shelest, Z., & Davydova, I. (2020). Soil sampling when examining forests for radioactive contamination. Eastern-European Journal of Enterprise Technologies, 4(10 (106), 6–17. https://doi.org/10.15587/1729-4061.2020.209873