The use of low clinker binders in the production of autoclaved aerated concrete by cutting technology

Authors

DOI:

https://doi.org/10.15587/1729-4061.2020.217308

Keywords:

aerated concrete, mineral additives, granulated blast furnace slag, low-clinker binder, ettringite

Abstract

The possibilities of optimization of cutting technology for the production of autoclaved aerated concrete and the use of low-clinker binders in it are investigated. Taking into account the price factor, energy-ecological trends in the development of the industry of building wall and heat-insulating materials, autoclaved aerated concrete has significant prospects for the development of production.

With the transition to the production of autoclaved aerated concrete of lower density, on the one hand, the total material consumption of production decreases, and on the other, the specific costs of the binder (cement) per unit mass of aerated concrete increase. The research was aimed at implementing a number of technological solutions. They imply a decrease in the energy intensity of production by minimizing the clinker component in the raw mix and an intensification of the production process in order to increase the coefficient of the structural quality of the material, as well as the possibility of mass production of low-density aerated concrete. Reducing the clinker component by replacing it with active mineral additives, blast-furnace granular slag, under the conditions of cutting technology, is possible provided that the problem of accelerating the plastic strength gain of aerated concrete raw material at the stage of formation of its macrostructure is solved.

It has been established that the implementation of forced synthesis of ettringite at the stage of formation of aerated concrete mixture with a high W/T ratio reduces the time of pre-autoclave holding of the raw massif. This allows the use of mineral additives and enhances the strength of the final product. Replacing 10–15 % of cement with the GBFS addition in the composition of the aerated concrete mixture in the presence of an additional content of gypsum stone of 5–10 % in the composition of sand slime provides an intensive increase in the plastic strength of the raw material before cutting it into products and high strength of the final product

Author Biographies

Vasyl Serdyuk, Vinnytsia National Technical University Khmelnytsky highway, 95, Vinnytsia, Ukraine, 21021

Doctor of Technical Sciences, Professor

Department of Construction, Urban Economy and Architecture

Dmitrii Rudchenko, LLC «Aeroc» Promyslova str., 6, Obukhiv, Ukraine, 03037

PhD, General Director

Nataliia Dyuzhilova, LLC «Aeroc» Promyslova str., 6, Obukhiv, Ukraine, 03037

PhD, Deputy Commercial Director for Marketing

References

  1. DBN V.2.6-31:2016. Teplova izoliatsiya budivel (2017). Kyiv, 37.
  2. SN 277–80. Instruktsiya po izgotovleniyu izdeliy iz yacheistogo betona (2001). Moscow: GUP TSPP, 47.
  3. Kaftaeva, M. V., Rakhimbaev, Sh. M., Zhukov, D. A., Kovalevskaya, K. Yu., Shugaeva, M. A., Marushko, M. V. (2014). Basis of requirements for raw materials for autoclaved aerated concrete. Modern problems of science and education, 1.
  4. Zhang, Z., Provis, J. L., Reid, A., Wang, H. (2014). Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. doi: https://doi.org/10.1016/j.conbuildmat.2014.01.081
  5. Li, B., Ling, X., Liu, X., Li, Q., Chen, W. (2019). Hydration of Portland cements in solutions containing high concentration of borate ions: Effects of LiOH. Cement and Concrete Composites, 102, 94–104. doi: https://doi.org/10.1016/j.cemconcomp.2019.04.010
  6. Yang, J., Huang, J., He, X., Su, Y., Tan, H., Chen, W. et. al. (2019). Segmented fractal pore structure covering nano- and micro-ranges in cementing composites produced with GGBS. Construction and Building Materials, 225, 1170–1182. doi: https://doi.org/10.1016/j.conbuildmat.2019.08.016
  7. Mal'kova, M. Yu. (2005). Stroitel'nye materialy gidratatsionnogo tverdeniya iz nizkoosnovnyh domennyh shlakov. Belgorod: Izd-vo BGTU im. V.G. Shuhova, 103.
  8. Rudchenko, D. G. (2012). O roli gipsovogo kamnya v formirovanii fazovogo sostava novoobrazovaniy avtoklavnogo yacheistogo betona. Budivelni materialy, vyroby ta sanitarna tekhnika, 43, 47–54.
  9. Poykert, S. (1976). Vliyanie gipsa na svoystva tsementnogo rastvora i tsementnogo testa, podvergnutyh kratkovremennoy termicheskoy obrabotke. Vol. 2, Kn. 2. Moscow: Stroyizdat, 135–139.
  10. Fomina, E. V., Kudeyarova, N. P. (2006). Prochnost' smeshannogo vyazhushchego na izvesti predvaritel'nogo gasheniya s dobavkoy prirodnogo gipsa. Izvestiya vuzov Severo-Kavkazkiy region. Tehnicheskie nauki, S6, 17–19.
  11. Huang, H., Ye, G., Damidot, D. (2014). Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cement and Concrete Research, 60, 68–82. doi: https://doi.org/10.1016/j.cemconres.2014.03.010
  12. Bozhenov, P. I, Kavalerova, V. I. (1961). Vliyanie rezhimov avtoklavnoy obrabotki na svoystva rastvorov i betonov. Byulleten' tehnicheskoy informatsii Glavlenstroymaterialov, 9, 64.
  13. Samchenko, S. V., Zemskova, O. V., Kozlova, I. V. (2017). Model and mechanism of carbon nanotube stabilization with plasticizer based on polycarboxylate. Vestnik MGSU, 12 (7 (106)), 724–732. doi: https://doi.org/10.22227/1997-0935.2017.7.724-732
  14. Malolepszy, J., Laskawiec, K. (2017). The today and tomorrow of autoclaved aerated concrete. Cement Lime Concrete, 5, 358–370.
  15. Łaskawiec, K. (2016). Skurcz betonu komórkowego - w teorii i praktyce inżynierskiej. MATERIAŁY BUDOWLANE, 1 (6), 224–225. doi: https://doi.org/10.15199/33.2016.06.92
  16. Butt, Yu. M., Rashkovich, L. N. (1965). Tverdenie vyazhuchih pri povyshennoy temperaturah. Moscow, 224.
  17. Serdyuk, V., Rudchenko, D. (2015). Aluminium production technologies blowing agent in cellular concrete. Suchasni tekhnolohiyi, materialy i konstruktsii v budivnytstvi, 1 (18), 39–45.
  18. Kudeyarova, N. P., Ozhereleva, A. Y. (2019). Effect of gypsum additive on quality of compositional binding for products of cellular structure. Bulletin of BSTU named after V.G. Shukhov, 6, 96–101. doi: https://doi.org/10.34031/article_5d0a380978a0d8.85307277
  19. Kaftaeva, M. V., Rahimbaev, I. Sh. (2013). Teplovydelenie pri sinteze gidrosilikatnoy svyazki avtoklavnogo gazobetona. Mezhdunarodnyy zhurnal prikladnyh i fundamental'nyh issledovaniy, 10-3, 373–376.
  20. Butt, Yu. M., Sychev, M. M., Timashev, V. V. (1980). Himicheskaya tehnologiya vyazhushchih materialov. Moscow Vysshaya shkola, 472.
  21. Shpynova, L. G. (1985). Issledovanie svoystv izvesti. Stroitel'nye materialy, 6, 26–27.
  22. Sheykin, A. E. (1974). Struktura, prochnost' i treshchinostoykost' tsementnogo kamnya. Moscow: Stroyizdat, 191.

Downloads

Published

2020-12-31

How to Cite

Serdyuk, V., Rudchenko, D., & Dyuzhilova, N. (2020). The use of low clinker binders in the production of autoclaved aerated concrete by cutting technology. Eastern-European Journal of Enterprise Technologies, 6(1 (108), 63–71. https://doi.org/10.15587/1729-4061.2020.217308

Issue

Section

Engineering technological systems