Construction of a method for representing an approximation model of an object as a set of linear differential models
DOI:
https://doi.org/10.15587/1729-4061.2020.220326Keywords:
object approximation model, structural identification, Padé approximant, linear differential modelsAbstract
This paper has demonstrated the need to use models not only at the stage of theoretical research and design operations but also when studying existing objects. The techniques to build them on the basis of identification methods have been analyzed. The identification methods have been shown when determining the parameters of processes and objects. The difficulty of defining the models' structures has been emphasized.
A method has been proposed to determine the structure of an arbitrary object's model as the approximating set of linear differential models. The data on the object's response to external impact have been used as source data. Demonstrating the method's feasibility employed a set of standard links and a standard external influence in the form of a stepped function as a model. This approach helps assess the adequacy of the obtained approximation results based on the precise solutions available. In a general case, there are no specific requirements for the form of an external influence and an object's reaction.
The data that reflect the object's response should allow their approximation using a polynomial. That makes it possible to represent them following a Laplace transform in the form of a truncated power series in the image domain. The transfer function is written in a general form as a rational fraction. It underlies a Padé approximant of the truncated power series.
The comparison of the available accurate calculation results and those derived on the basis of the built model has shown good agreement. In the cases under consideration, the computation error did not exceed the 5 % value permissible for engineering calculations. This is also the case when using the approximation of original data over a limited period.
The response of the resulting model to the external influence that simulates a real pulse was investigated. The comparison with precise results showed a discrepancy not exceeding the value permissible for engineering calculations (<5 %)References
- Pelykh, S. N., Maksimov, M. V., Ryabchikov, S. D. (2016). The prediction problems of VVER fuel element cladding failure theory. Nuclear Engineering and Design, 302, 46–55. doi: https://doi.org/10.1016/j.nucengdes.2016.04.005
- Brunetkin, A. I., Maksimov, M. V. (2015). The method for determination of a combustible gase composition during its combustion. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 83–90. Available at: http://nv.nmu.org.ua/index.php/en/component/jdownloads/finish/56-05/8406-2015-05-brunetkin/0
- Tanevski, J., Todorovski, L., Kalaidzidis, Y., Džeroski, S. (2015). Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Systems Biology, 9 (1). doi: https://doi.org/10.1186/s12918-015-0175-x
- Spieler, D., Mai, J., Craig, J. R., Tolson, B. A., Schütze, N. (2020). Automatic Model Structure Identification for Conceptual Hydrologic Models. Water Resources Research, 56 (9). doi: https://doi.org/10.1029/2019wr027009
- Hieu, D. V., Hai, N. Q., Hung, D. T. (2018). The Equivalent Linearization Method with a Weighted Averaging for Solving Undamped Nonlinear Oscillators. Journal of Applied Mathematics, 2018, 1–15. doi: https://doi.org/10.1155/2018/7487851
- Bartosiewicz, Z., Kotta, Ü., Tõnso, M., Wyrwas, M. (2015). Static state feedback linearization of nonlinear control systems on homogeneous time scales. Mathematics of Control, Signals, and Systems, 27 (4), 523–550. doi: https://doi.org/10.1007/s00498-015-0150-5
- Zítek, P., Fišer, J., Vyhlídal, T. (2017). Dynamic similarity approach to control system design: delayed PID control loop. International Journal of Control, 92 (2), 329–338. doi: https://doi.org/10.1080/00207179.2017.1354398
- Balaguer, P. (2013). Application of Dimensional Analysis in Systems Modeling and Control Design. IET, 152. doi: https://doi.org/10.1049/pbce090e
- Brunetkin, O., Maksymova, O., Trishyn, F. (2018). Development of the method for reducing a model to the nondimensionalized form. Eastern-European Journal of Enterprise Technologies, 3 (4 (93)), 26–33. doi: https://doi.org/10.15587/1729-4061.2018.132562
- Leniowska, L., Sierżȩga, M. (2019). Vibration control of a circular plate using parametric controller with phase shift adjustment. Mechatronics, 58, 39–46. doi: https://doi.org/10.1016/j.mechatronics.2019.01.003
- Zhu, Y., Hou, Z. (2015). Controller dynamic linearisation-based model-free adaptive control framework for a class of non-linear system. IET Control Theory & Applications, 9 (7), 1162–1172. doi: https://doi.org/10.1049/iet-cta.2014.0743
- Tabatabaei, M., Barati-Boldaji, R. (2017). Non-overshooting PD and PID controllers design. Automatika, 58 (4), 400–409. doi: https://doi.org/10.1080/00051144.2018.1471824
- Fernández, M., Conde, B., Eguía, P., Granada, E. (2018). Parameter identification of a Round-Robin test box model using a deterministic and probabilistic methodology. Journal of Building Performance Simulation, 11 (6), 623–638. doi: https://doi.org/10.1080/19401493.2017.1420824
- Yang, X., Gao, J., Shardt, Y. A. W., Li, L., Tong, C. (2017). Parameter Identification and Control Scheme for Monitoring Automatic Thickness Control System with Measurement Delay. Journal of Control Science and Engineering, 2017, 1–11. doi: https://doi.org/10.1155/2017/1952594
- Trojan, M. (2019). Modeling of a steam boiler operation using the boiler nonlinear mathematical model. Energy, 175, 1194–1208. doi: https://doi.org/10.1016/j.energy.2019.03.160
- Iannino, V., Colla, V., Innocenti, M., Signorini, A. (2017). Design of a H∞ Robust Controller with μ-Analysis for Steam Turbine Power Generation Applications. Energies, 10 (7), 1026. doi: https://doi.org/10.3390/en10071026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Olexander Brunetkin, Konstantin Beglov, Vladimir Brunetkin, Оleksiy Maksymov, Oksana Maksymova, Oleh Havaliukh, Volodymyr Demydenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.