Розробка методу представлення апроксимаційної моделі об'єкта як множини лінійних диференційних моделей
DOI:
https://doi.org/10.15587/1729-4061.2020.220326Ключові слова:
апроксимаційна модель об'єкта, структурна ідентифікація, апроксимація Паде, лінійні диференціальні моделіАнотація
Показано необхідність використання моделей не тільки на стадії теоретичних досліджень і проектних робіт, але і при дослідженні вже існуючих об'єктів. Проаналізовано способи їх побудови на основі методів ідентифікації. Відзначено використання методів ідентифікації для визначення параметрів процесів і об'єктів. Підкреслено складність визначення структури моделей.
Запропоновано метод визначення структури моделі довільного об'єкта як апроксимуючої сукупності лінійних диференціальних моделей. В якості вихідних даних використані реакції об'єкта на зовнішній вплив. Для демонстрації працездатності методу в якості моделі використана сукупність стандартних ланок і стандартний зовнішній вплив у вигляді ступінчастої функції. Такий підхід дозволяє оцінити адекватність одержаних апроксимаційних результатів на основі наявних точних рішень. У загальному випадку спеціальних вимог до форми зовнішнього впливу і реакції об'єкта не висувається.
Дані, що відображають реакцію об'єкта, повинні давати можливість апроксимувати їх за допомогою полінома. Це дозволяє представити їх після перетворення Лапласа у в формі усіченого степеневого ряду в просторі зображень. Передавальна функція записується в загальному вигляді як раціональний дріб. Вона є основою для апроксимації Паде усіченого степеневого ряду.
Порівняння наявних точних результатів розрахунків і отриманих на основі побудованої моделі показало гарний збіг. У розглянутих випадках похибка обчислень не виходила за допустиму для інженерних розрахунків величину 5 %. Це забезпечується і в разі використання апроксимації вихідних даних для обмеженого проміжку часу.
Була досліджена реакція отриманої моделі на зовнішній вплив, що імітує реальний імпульс. Порівняння з точними результатами показало розбіжність, що не перевищує допустимої величини для інженерних розрахунків (<5 %)Посилання
- Pelykh, S. N., Maksimov, M. V., Ryabchikov, S. D. (2016). The prediction problems of VVER fuel element cladding failure theory. Nuclear Engineering and Design, 302, 46–55. doi: https://doi.org/10.1016/j.nucengdes.2016.04.005
- Brunetkin, A. I., Maksimov, M. V. (2015). The method for determination of a combustible gase composition during its combustion. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 83–90. Available at: http://nv.nmu.org.ua/index.php/en/component/jdownloads/finish/56-05/8406-2015-05-brunetkin/0
- Tanevski, J., Todorovski, L., Kalaidzidis, Y., Džeroski, S. (2015). Domain-specific model selection for structural identification of the Rab5-Rab7 dynamics in endocytosis. BMC Systems Biology, 9 (1). doi: https://doi.org/10.1186/s12918-015-0175-x
- Spieler, D., Mai, J., Craig, J. R., Tolson, B. A., Schütze, N. (2020). Automatic Model Structure Identification for Conceptual Hydrologic Models. Water Resources Research, 56 (9). doi: https://doi.org/10.1029/2019wr027009
- Hieu, D. V., Hai, N. Q., Hung, D. T. (2018). The Equivalent Linearization Method with a Weighted Averaging for Solving Undamped Nonlinear Oscillators. Journal of Applied Mathematics, 2018, 1–15. doi: https://doi.org/10.1155/2018/7487851
- Bartosiewicz, Z., Kotta, Ü., Tõnso, M., Wyrwas, M. (2015). Static state feedback linearization of nonlinear control systems on homogeneous time scales. Mathematics of Control, Signals, and Systems, 27 (4), 523–550. doi: https://doi.org/10.1007/s00498-015-0150-5
- Zítek, P., Fišer, J., Vyhlídal, T. (2017). Dynamic similarity approach to control system design: delayed PID control loop. International Journal of Control, 92 (2), 329–338. doi: https://doi.org/10.1080/00207179.2017.1354398
- Balaguer, P. (2013). Application of Dimensional Analysis in Systems Modeling and Control Design. IET, 152. doi: https://doi.org/10.1049/pbce090e
- Brunetkin, O., Maksymova, O., Trishyn, F. (2018). Development of the method for reducing a model to the nondimensionalized form. Eastern-European Journal of Enterprise Technologies, 3 (4 (93)), 26–33. doi: https://doi.org/10.15587/1729-4061.2018.132562
- Leniowska, L., Sierżȩga, M. (2019). Vibration control of a circular plate using parametric controller with phase shift adjustment. Mechatronics, 58, 39–46. doi: https://doi.org/10.1016/j.mechatronics.2019.01.003
- Zhu, Y., Hou, Z. (2015). Controller dynamic linearisation-based model-free adaptive control framework for a class of non-linear system. IET Control Theory & Applications, 9 (7), 1162–1172. doi: https://doi.org/10.1049/iet-cta.2014.0743
- Tabatabaei, M., Barati-Boldaji, R. (2017). Non-overshooting PD and PID controllers design. Automatika, 58 (4), 400–409. doi: https://doi.org/10.1080/00051144.2018.1471824
- Fernández, M., Conde, B., Eguía, P., Granada, E. (2018). Parameter identification of a Round-Robin test box model using a deterministic and probabilistic methodology. Journal of Building Performance Simulation, 11 (6), 623–638. doi: https://doi.org/10.1080/19401493.2017.1420824
- Yang, X., Gao, J., Shardt, Y. A. W., Li, L., Tong, C. (2017). Parameter Identification and Control Scheme for Monitoring Automatic Thickness Control System with Measurement Delay. Journal of Control Science and Engineering, 2017, 1–11. doi: https://doi.org/10.1155/2017/1952594
- Trojan, M. (2019). Modeling of a steam boiler operation using the boiler nonlinear mathematical model. Energy, 175, 1194–1208. doi: https://doi.org/10.1016/j.energy.2019.03.160
- Iannino, V., Colla, V., Innocenti, M., Signorini, A. (2017). Design of a H∞ Robust Controller with μ-Analysis for Steam Turbine Power Generation Applications. Energies, 10 (7), 1026. doi: https://doi.org/10.3390/en10071026
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Olexander Brunetkin, Konstantin Beglov, Vladimir Brunetkin, Оleksiy Maksymov, Oksana Maksymova, Oleh Havaliukh, Volodymyr Demydenko
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Закріплення та умови передачі авторських прав (ідентифікація авторства) здійснюється у Ліцензійному договорі. Зокрема, автори залишають за собою право на авторство свого рукопису та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY. При цьому вони мають право укладати самостійно додаткові угоди, що стосуються неексклюзивного поширення роботи у тому вигляді, в якому вона була опублікована цим журналом, але за умови збереження посилання на першу публікацію статті в цьому журналі.
Ліцензійний договір – це документ, в якому автор гарантує, що володіє усіма авторськими правами на твір (рукопис, статтю, тощо).
Автори, підписуючи Ліцензійний договір з ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», мають усі права на подальше використання свого твору за умови посилання на наше видання, в якому твір опублікований. Відповідно до умов Ліцензійного договору, Видавець ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР» не забирає ваші авторські права та отримує від авторів дозвіл на використання та розповсюдження публікації через світові наукові ресурси (власні електронні ресурси, наукометричні бази даних, репозитарії, бібліотеки тощо).
За відсутності підписаного Ліцензійного договору або за відсутністю вказаних в цьому договорі ідентифікаторів, що дають змогу ідентифікувати особу автора, редакція не має права працювати з рукописом.
Важливо пам’ятати, що існує і інший тип угоди між авторами та видавцями – коли авторські права передаються від авторів до видавця. В такому разі автори втрачають права власності на свій твір та не можуть його використовувати в будь-який спосіб.