Development of a simulation model of a photoplethysmographic signal under psychoemotional stress

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.227001

Keywords:

harmonic function, simulation model, periodic signal, psychoemotional stress, photoplethysmographic signal

Abstract

A simulation model of a photoplethysmographic signal under psychoemotional stress taking into account the nature of signals of biological origin and stress response stages was developed. The method of constructing the simulation model is based on reconstructing the waveform and coding points of the signal taking into account the stress response curve using harmonic functions at characteristic time intervals. Using the simulation model of the photoplethysmographic signal under psychoemotional stress with previously known parameters allows validation of methods and algorithms for processing such data. It was found that in the process of simulation, it is necessary to take into account the signal frequency, random component and stress response curve. This complicates the simulation algorithm. However, using the simulation model with variable input parameters allows reproducing the signal with an emphasis on stress response stages. One of the features of the proposed model is the ability to reproduce the signal by coding points for amplitude and time intervals using harmonic functions. The relative error for the amplitude variation of the model and experimental data is 3.97 %, and for the period – 3.41 %. Calculation of Student's t-test showed a statistically insignificant difference: p=0.296 for the amplitude and p=0.275 for the period. This indicates that the simulation model takes into account the signal characteristics under stress: frequency, random component and stress response curve. Using the proposed simulation model is an adequate way to assess methods and algorithms for analyzing the state of the cardiovascular system under psychoemotional stress

Author Biographies

Evhenia Yavorska, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor, Head of Department

Department of Biotechnical Systems

Oksana Strembitska, Ternopil Ivan Puluj National Technical University

Postgraduate Student

Department of Biotechnical Systems

Michael Strembitskyi, Ternopil Ivan Puluj National Technical University

PhD, Associate Professor

Department of Instruments and Control-Measurement Systems

Iryna Pankiv, Ternopil Ivan Puluj National Technical University

Postgraduate Student

Department of Biotechnical Systems

References

  1. Burgonskyi, V., Вurgonskaya, S. (2014). Changes in stress as a prerequisite for psychosomatic disorders dental patients. Sovremennaya stomatologiya, 4, 13–20.
  2. Dem'yanenko, C. A., Avdonina, L. I., Boyko, V. V. (2004). Kardiomonitoring pri razlichenii boyazni i straha i prinyatii resheniya o premedikatsii na stomatologicheskom prieme. Institut ctomatologii, 3 (24), 8–12. Available at: https://instom.spb.ru/catalog/article/8594/?view=pdf
  3. Demyanenko, S. A. (2014). Psycho-emotional stress of hypertensive reaction to dental reception. Vyatskiy meditsinskiy vestnik, 3-4, 53–56. Available at: https://cyberleninka.ru/article/n/psihoemotsionalnoe-napryazhenie-v-razvitii-gipertenzivnyh-reaktsiy-na-stomatologicheskom-prieme/viewer
  4. Vagner, V. D., Nimaev, B. Ts. (2005). Kontseptual'nye osnovy dal'neyshego razvitiya obschey (semeynoy) praktiki v stomatologii. Institut stomatologii, 4, 20–21. Available at: https://instom.spb.ru/catalog/article/8762/?view=pdf
  5. Mintser, O. P. (Ed.) (2011). Suchasni metody i zasoby dlia vyznachennia i diahnostuvannia emotsiynoho stresu. Vinnytsia: VNTU, 228. Available at: http://dspace.wunu.edu.ua/jspui/bitstream/316497/2138/1/Monografiya_Syergyeyeva.pdf
  6. Moraes, J., Rocha, M., Vasconcelos, G., Vasconcelos Filho, J., de Albuquerque, V., Alexandria, A. (2018). Advances in Photopletysmography Signal Analysis for Biomedical Applications. Sensors, 18 (6), 1894. doi: https://doi.org/10.3390/s18061894
  7. Tkachenko, P. I., Lokhmatova, N. M., Byеlokon, S. A., Dobroskok, V. A. (2017). The intensity of emotional tension in children with cleft palate in response to situational stress. Ukrainskyi stomatolohichnyi almanakh, 1, 75–78. Available at: http://elib.umsa.edu.ua/jspui/bitstream/umsa/10292/1/Vyrazhenist_psykhoemotsiinoho_napruzhennia.pdf
  8. Moshkevich, V. S. (1970). Fotopletizmografiya (Apparatura i metody issledovaniya). Moscow: Meditsina, 208. Available at: https://www.twirpx.com/file/1537026
  9. Akulov, V. A. (2006). Model' pul'sovoy volny i ee realizatsiya v srede Excel. Proceedings of the Third All-Russian Scientific Conference. P. 4, Matem. Mod. Kraev. Zadachi. Samara, 13–16. Available at: http://www.mathnet.ru/links/7fb61787446959c52d59306ab30dee10/mmkz693.pdf
  10. Samkov, C. B., Chernenko, A. I. (2006). Sverhshirokopolosnyy radar dlya izmereniya parametrov serdechno-sosudistoy sistemy cheloveka pri fizicheskih nagruzkah. II Vseros. nauchnaya konf.-seminar. Murom, 475–479.
  11. Gnilitskyy, V. V., Muzhitska, N. V. (2010). Refinement of the harmonic model of pulse wave for the express-diagnosis of pulsogram. Visnyk ZhDTU. Seriya "Tekhnichni nauky", 4 (55), 28–38.
  12. Wu, H.-T., Wu, H.-K., Wang, C.-L., Yang, Y.-L., Wu, W.-H., Tsai, T.-H., Chang, H.-H. (2016). Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform. PLOS ONE, 11 (6), e0157135. doi: https://doi.org/10.1371/journal.pone.0157135
  13. Hvostivska, L. V., Oksukhivska, H. M., Hvostivskyy, M. O., Shadrina, H. M. (2019). Imitation Modeling of the Daily Pulse Signal for Long-Term Monitoring Systems. Visnyk NTUU KPI Seriia - Radiotekhnika Radioaparatobuduvannia, 77, 66–73. doi: https://doi.org/10.20535/radap.2019.77.66-73
  14. Trigranyan, R. A. (1988). Stress i ego znachenie dlya organizma. Moscow: Nauka, 175.
  15. Kokun, O. M., Ahaiev, N. A., Pishko, I. O., Lozinska, N. S. (2015). Osnovy psykholohichnoi dopomohy viyskovosluzhbovtsiam v umovakh boiovykh diy. Kyiv: NDTs HP ZSU, 170. Available at: https://lib.iitta.gov.ua/11222/1/%D0%9F%D0%BE%D1%81%D1%96%D0%B1%D0%BD%D0%B8%D0%BA_2015.pdf
  16. Wawrzyniak, A. J., Dilsizian, V., Krantz, D. S., Harris, K. M., Smith, M. F., Shankovich, A. et. al. (2015). High Concordance Between Mental Stress-Induced and Adenosine-Induced Myocardial Ischemia Assessed Using SPECT in Heart Failure Patients: Hemodynamic and Biomarker Correlates. Journal of Nuclear Medicine, 56 (10), 1527–1533. doi: https://doi.org/10.2967/jnumed.115.157990
  17. Shevchenko, V. V., Osadchiy, A. V., Esipenko, E. S. (2012). Sposob vydeleniya informativnyh parametrov fotopletizmosignala dlya opredeleniya sistemnyh reaktsiy na MLT. Sovremennye nauchnye issledovaniya i innovatsii, 5. Available at: http://web.snauka.ru/issues/2012/05/12640
  18. Hvostivska, L. V. (2016). The human vascular pulse signal imitation model. Herald of Khmelnytskyi national university. Technical sciences, 2, 94–100. Available at: http://nbuv.gov.ua/UJRN/Vchnu_tekh_2016_2_18
  19. Teng, Y., Ge, L., Chou, Y. (2018). A Novel Abnormal Segments Detection Method for Photopletysmography Signal. 2018 37th Chinese Control Conference (CCC). doi: https://doi.org/10.23919/chicc.2018.8483815
  20. Takazawa, K., Tanaka, N., Fujita, M., Matsuoka, O., Saiki, T., Aikawa, M. et. al. (1998). Assessment of Vasoactive Agents and Vascular Aging by the Second Derivative of Photoplethysmogram Waveform. Hypertension, 32 (2), 365–370. doi: https://doi.org/10.1161/01.hyp.32.2.365
  21. Askarian, B., Jung, K., Chong, J. W. (2019). Monitoring of Heart Rate from Photoplethysmographic Signals Using a Samsung Galaxy Note8 in Underwater Environments. Sensors, 19 (13), 2846. doi: https://doi.org/10.3390/s19132846

Downloads

Published

2021-04-30

How to Cite

Yavorska, E., Strembitska, O., Strembitskyi, M., & Pankiv, I. (2021). Development of a simulation model of a photoplethysmographic signal under psychoemotional stress. Eastern-European Journal of Enterprise Technologies, 2(9 (110), 36–45. https://doi.org/10.15587/1729-4061.2021.227001

Issue

Section

Information and controlling system