Devising a method for finding a family of membership functions to bifuzzy quantities

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.229657

Keywords:

fuzzy mathematics, membership function of type 2 fuzzy numbers, construction rules

Abstract

This paper has considered a task to expand the scope of application of fuzzy mathematics methods, which is important from a theoretical and practical point of view. A case was examined where the parameters of fuzzy numbers’ membership functions are also fuzzy numbers with their membership functions. The resulting bifuzziness does not make it possible to implement the standard procedure of building a membership function. At the same time, there are difficulties in performing arithmetic and other operations on fuzzy numbers of the second order, which practically excludes the possibility of solving many practical problems. A computational procedure for calculating the membership functions of such bifuzzy numbers has been proposed, based on the universal principle of generalization and rules for operating on fuzzy numbers. A particular case was tackled where the original fuzzy number’s membership function contains a single fuzzy parameter. It is this particular case that more often occurs in practice. It has been shown that the correct description of the original fuzzy number, in this case, involves a family of membership functions, rather than one. The simplicity of the proposed and reported analytical method for calculating a family of membership functions of a bifuzzy quantity significantly expands the range of adequate analytical description of the behavior of systems under the conditions of multi-level uncertainty. A procedure of constructing the membership functions of bifuzzy numbers with the finite and infinite carrier has been considered. The method is illustrated by solving the examples of using the developed method for fuzzy numbers with the finite and infinite carrier. It is clear from these examples that the complexity of analytic description of membership functions with hierarchical uncertainty is growing rapidly with the increasing number of parameters for the original fuzzy number’s membership function, which are also set in a fuzzy fashion. Possible approaches to overcoming emerging difficulties have been described.

Author Biographies

Lev Raskin, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor, Head of Department

Department of Distributed Information Systems and Cloud Technologies

Oksana Sira, National Technical University «Kharkiv Polytechnic Institute»

Doctor of Technical Sciences, Professor

Department of Distributed Information Systems and Cloud Technologies

Larysa Sukhomlyn, Kremenchuk Mykhailo Ostrohradskyi National University

PhD, Associate Professor

Department of Management

Roman Korsun, National Technical University «Kharkiv Polytechnic Institute»

Postgraduate Student

Department of Distributed Information Systems and Cloud Technologies

References

  1. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8 (3), 338–353. doi: https://doi.org/10.1016/s0019-9958(65)90241-x
  2. Dyubua, D., Prad, A. (1990). Teoriya vozmozhnostey. Prilozheniya k predstavleniyu znaniy v informatike. Moscow: Radio i svyaz', 286.
  3. Venttsel', E. S. (1969). Teoriya veroyatnostey. Moscow: Vysshaya shkola, 576.
  4. Gnedenko, B. V. (1969). Kurs teorii veroyatnostey. Moscow: Nauka, 400.
  5. Kolmogorov, A. N. (1974). Osnovnye ponyatiya teorii veroyatnostey. Moscow: Nauka, 119.
  6. Kremer, N. Sh. (2004). Teoriya veroyatnostey i matematicheskaya statistika. Moscow: YUNITI-DANA, 573.
  7. Chernova, N. I. (2007). Teoriya veroyatnostey. Novosibirsk: Novosibirskiy gosudarstvenniy universitet, 260.
  8. Kofman, A. (1982). Vvedenie v teoriyu nechetkih mnozhestv. Moscow: Radio i svyaz', 486.
  9. Leonenkov, A. V. (2003). Nechetkoe modelirovanie v srede Matlab fuzzy Tech. Sankt-Peterburg: BHV – Peterburg, 736.
  10. Lyu, B. (2005). Teoriya i praktika neopredelennogo programmirovaniya. Moscow: BINOM, 416.
  11. Liu, F., Mendel, J. M. (2008). Encoding Words Into Interval Type-2 Fuzzy Sets Using an Interval Approach. IEEE Transactions on Fuzzy Systems, 16 (6), 1503–1521. doi: https://doi.org/10.1109/tfuzz.2008.2005002
  12. Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
  13. Kadigrob, S. V., Seraya, O. V. (2009). Mnogofaktornye bisluchaynye modeli bezotkaznosti sistem. Visnyk natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 10, 34–40. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/37582/1/vestnik_KhPI_2009_10_Kadigrob_Mnogofaktornye_bisluchaynye.pdf
  14. Castillo, O., Melin, P. (2008). Type-2 Fuzzy Logic: Theory and Applications. Springer-Verlag, 244. doi: https://doi.org/10.1007/978-3-540-76284-3
  15. Hu, B. Q., Wang, C. Y. (2014). On type-2 fuzzy relations and interval-valued type-2 fuzzy sets. Fuzzy Sets and Systems, 236, 1–32. doi: https://doi.org/10.1016/j.fss.2013.07.011
  16. Mendel, J. M. (2007). Type-2 fuzzy sets and systems: an overview. IEEE Computational Intelligence Magazine, 2 (1), 20–29. doi: https://doi.org/10.1109/mci.2007.380672
  17. Celik, E., Gul, M., Aydin, N., Gumus, A. T., Guneri, A. F. (2015). A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowledge-Based Systems, 85, 329–341. doi: https://doi.org/10.1016/j.knosys.2015.06.004
  18. Du, Z., Yan, Z., Zhao, Z. (2019). Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets and Systems, 356, 92–112. doi: https://doi.org/10.1016/j.fss.2018.02.013
  19. Zhang, Z., Niu, Y. (2018). Adaptive sliding mode control for interval type-2 stochastic fuzzy systems subject to actuator failures. International Journal of Systems Science, 49 (15), 3169–3181. doi: https://doi.org/10.1080/00207721.2018.1534027
  20. Seraya, O. V. (2010). Mnogomernye modeli logistiki v usloviyah neopredelennosti. Kharkiv: FOP Stetsenko, 512.
  21. Malolepshaya, N. E. (2013). Nechetkaya regressionnaya model' dlya chastnogo sluchaya interval'nyh nechetkih chisel vtorogo tipa. Lesnoy vestnik, 3, 190–192. Available at: https://cyberleninka.ru/article/n/nechetkaya-regressionnaya-model-dlya-chastnogo-sluchaya-intervalnyh-nechetkih-chisel-vtorogo-tipa
  22. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292

Downloads

Published

2021-04-30

How to Cite

Raskin, L., Sira, O., Sukhomlyn, L., & Korsun, R. (2021). Devising a method for finding a family of membership functions to bifuzzy quantities. Eastern-European Journal of Enterprise Technologies, 2(4 (110), 6–14. https://doi.org/10.15587/1729-4061.2021.229657

Issue

Section

Mathematics and Cybernetics - applied aspects