Hydrological-stenobiontic method for determining environmental flows from reservoir
DOI:
https://doi.org/10.15587/1729-4061.2021.229689Keywords:
environmental flow, river channel reservoir, flow velocity, tailwater of reservoir, requirements of aquatic organismsAbstract
In the practice of using river resources accumulated in reservoirs, there is a typical problem of unreasonably large water intake for industrial-household needs to the detriment of the aquatic ecosystem. An important tool for balancing these links is to provide environmental flows based on a comprehensive analysis of river functioning patterns. And in terms of a progressing negative impact of reservoirs on the integrity of river ecosystems, the choice of indicator hydrobiota for the calculation of environmental flows should be considered insufficiently substantiated. The solution of this problem, by filling the appropriate methodological niche, allowed substantiating the hydrological-stenobiontic method for determining environmental flows. The developed solutions are based on the minimum possible values of tolerance of aquatic ecosystems stenobionts to water velocity. Five groups of macrozoobenthos represent relevant target organisms. The hydrological calculations presented in the paper are based on the data of daily water flow rate for 80 years and the results of field studies of the river channel depth in the low water period. On this basis, it was determined that for lowland parts of rivers, the flow velocity in the tailwater of reservoirs should be at least 0.2 m/s. Comparison of the curve of the average monthly water velocity dynamics of 95 % runoff availability with the minimum corresponding requirements of stenobionts allowed determining the most threatening period of the year for the aquatic ecosystem – summer low water. For a reservoir in the lowland parts of the river, based on the developed method, the calculations substantiate an increase in the minimum volume of environmental flows by 40 % relative to the current one. It is also estimated that the average annual and average second volumes of environmental flows should be about 38 % of the respective river runoff. The obtained results are close to those found on rivers in China, Iran and the United States in the framework of a comprehensive analysis of hydrological, hydraulic and hydrobiological parameters of the aquatic ecosystem
References
- Landau, Yu., Chornomorov, A. (2020). Pivdennyi Buh: yak polipshyty vodozabezpechennia Mykolaivshchyny. Uriadovyi kurier. Available at: https://ukurier.gov.ua/uk/articles/pivdennij-bug-yak-polipshiti-vodozabezpechennya-mi/
- Panasyuk, I. V., Tomil’tseva, A. I., Zub, L. M. (2020). Basic approaches to preparing of operating rules for lowland reservoirs of small HPPs in terns of compliance with environmental requirements. Hidroenerhetyka Ukrainy, 3-4, 52–57. Available at: https://uhe.gov.ua/sites/default/files/2020-12/15.pdf
- Rytwinski, T., Taylor, J. J., Bennett, J. R., Smokorowski, K. E., Cooke, S. J. (2017). What are the impacts of flow regime changes on fish productivity in temperate regions? A systematic map protocol. Environmental Evidence, 6 (1). doi: https://doi.org/10.1186/s13750-017-0093-z
- Zeiringer, B., Seliger, C., Greimel, F., Schmutz, S. (2018). River Hydrology, Flow Alteration, and Environmental Flow. Riverine Ecosystem Management, 67–89. doi: https://doi.org/10.1007/978-3-319-73250-3_4
- Winton, R. S., Calamita, E., Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences, 16 (8), 1657–1671. doi: https://doi.org/10.5194/bg-16-1657-2019
- Arthington, A. H., Tharme, R. E., Brizga, S. O., Pusey, B.J., Kennard, M. J. (2003). Environmental flow assessment with emphasis on holistic methodologies. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Volume II. Sustaining Livelihoods and Biodiversity in the New Millennium. Available at: http://www.fao.org/3/ad526e/ad526e07.htm#bm07
- Mulligan, M., van Soesbergen, A., Sáenz, L. (2020). GOODD, a global dataset of more than 38,000 georeferenced dams. Scientific Data, 7 (1). doi: https://doi.org/10.1038/s41597-020-0362-5
- Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1 (4), 6–10. doi: https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
- Yang, F., Xia, Z., Yu, L., Guo, L. (2012). Calculation and Analysis of the Instream Ecological Flow for the Irtysh River. Procedia Engineering, 28, 438–441. doi: https://doi.org/10.1016/j.proeng.2012.01.747
- Stalnaker, C., Lamb, B. L., Henriksen, J., Bovee, K., Bartholow, J. (1995). Instream flow incremental methodology. A primer for IFIM. Biological Report No. 29. National Biological Service, 45. Available at: https://books.google.com.ua/books?id=rEyGMq8TJOcC&printsec=frontcover&hl=ru&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
- Physical Habitat Simulation (PHABSIM) Software for Windows. U.S. Geological Survey. Available at: https://www.usgs.gov/software/physical-habitat-simulation-phabsim-software-windows
- DRIFT. Available at: https://www.drift-eflows.com/about-drift/
- Davis, R., Hirji, R. (2003). Water resources and environment technical note C.2. Washington. Available at: https://iwlearn.net/resolveuid/7d6ea185fd753130f6558a39950d746b
- Reil, A., Skoulikaris, Ch., Alexandridis, T. K., Roub, R. (2018). Evaluation of riverbed representation methods for one-dimensional flood hydraulics model. Journal of Flood Risk Management, 11 (2), 169–179. doi: https://doi.org/10.1111/jfr3.12304
- Ekologicheskie popuski (2003). Publikatsii Treningovogo tsentra MKVK. Vypusk 1. Tashkent. Available at: http://www.cawater-info.net/library/rus/01_eco.pdf
- King, J. M., Tharme, R. E. (1994). Assessment of the Instream Flow Incremental Methodology, and initial development of alternative instream flow methodologies for South Africa. Water Research Commission, Report No. 295/1/94. Available at: http://www.wrc.org.za/wp-content/uploads/mdocs/295-1-941.pdf
- Minjian, C., Gaoxu, W., Huali, F., Liqun, W. (2012). The Calculation of River Ecological Flow for the Liao Basin in China. Procedia Engineering, 28, 715–722. doi: https://doi.org/10.1016/j.proeng.2012.01.796
- Sun, T., Yang, Z.-F. (2005). Calculation of environmental flows in river reaches based on ecological objectives. Huan Jing Ke Xue, 26 (5), 43–48. Available at: https://pubmed.ncbi.nlm.nih.gov/16366468/
- Huang, S., Chang, J., Huang, Q., Wang, Y., Chen, Y. (2014). Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation. Journal of Applied Mathematics, 2014, 1–9. doi: https://doi.org/10.1155/2014/127067
- Tan, G., Yi, R., Chang, J., Shu, C., Yin, Z., Han, S. et. al. (2018). A new method for calculating ecological flow: Distribution flow method. AIP Advances, 8 (4), 045118. doi: https://doi.org/10.1063/1.5022048
- Abdi, R., Yasi, M. (2015). Evaluation of environmental flow requirements using eco-hydrologic–hydraulic methods in perennial rivers. Water Science and Technology, 72 (3), 354–363. doi: https://doi.org/10.2166/wst.2015.200
- Global Environmental Flow Calculator. Available at: http://naturalresources-centralasia.org/assets/files/VALUES/ValuES_Method_Profile_Global_Flow_Calculator_EN.pdf
- IWMI Environmental Flow Calculators. Available at: https://www.iwmi.cgiar.org/resources/data-and-tools/models-and-software/environmental-flow-calculators/
- Vasil'ev, Yu. S., Hrisanov, N. I. (1991). Ekologiya ispol'zovaniya vozobnovlyayuschihsya energoistochnikov. Leningrad: Izdatel'stvo Leningradskogo universiteta, 343.
- Jansson, R. (2006). The effect of dams on biodiversity. Dams under Debate. Swedish Research Council Formas, 77–84. Available at: https://www.researchgate.net/publication/265914243_The_effect_of_dams_on_biodiversity
- Chunyan, Q., Yong, Z., Haiyan, Y., Beixin, W. (2013). Concordance among different aquatic insect assemblages and the relative role of spatial and environmental variables. Biodiversity Science, 21 (3), 326–333. doi: https://doi.org/10.3724/sp.j.1003.2013.08223
- Bezsonov, Y., Andreev, V., Smyrnov, V. (2016). Assessment of safety index for water ecological system. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 24–34. doi: https://doi.org/10.15587/1729-4061.2016.86170
- Dolédec, S., Lamouroux, N., Fuchs, U., Mérigoux, S. (2007). Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology, 52 (1), 145–164. doi: https://doi.org/10.1111/j.1365-2427.2006.01663.x
- Holt, E. A., Miller, S. W. (2010). Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Knowledge, 3 (10), 8. Available at: https://www.nature.com/scitable/knowledge/library/bioindicators-using-organisms-to-measure-environmental-impacts-16821310/
- Hoover, T. M., Richardson, J. S. (2009). Does water velocity influence optimal escape behaviors in stream insects? Behavioral Ecology, 21 (2), 242–249. doi: https://doi.org/10.1093/beheco/arp182
- Vilenica, M., Mičetić Stanković, V., Sartori, M., Kučinić, M., Mihaljević, Z. (2017). Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst. Knowledge & Management of Aquatic Ecosystems, 418, 14. doi: https://doi.org/10.1051/kmae/2017005
- Jacobus, L. M., Macadam, C. R., Sartori, M. (2019). Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services. Insects, 10 (6), 170. doi: https://doi.org/10.3390/insects10060170
- Bouchard, R. W. Jr. (2004). Guide to aquatic macroinvertebrates of the Upper Midwest. Water Resources Center, University of Minnesota, 208. Available at: https://dep.wv.gov/WWE/getinvolved/sos/Documents/Benthic/UMW/Ephemeroptera.pdf
- Aquatic Benthic Macroinvertebrates As Water Quality Indicators. Available at: https://www.wpwa.org/documents/education/Biological%20sampling.pdf
- Bubnov, A. G. et. al.; Grinevich, V. I. (Ed.) (2007). Biotestoviy analiz – integral'niy metod otsenki kachestva obektov okruzhayuschey sredy. Ivanovo, 112.
- Garbe, J., Beevers, L., Pender, G. (2016). The interaction of low flow conditions and spawning brown trout (Salmo trutta) habitat availability. Ecological Engineering, 88, 53–63. doi: https://doi.org/10.1016/j.ecoleng.2015.12.011
- Life in freshwater stream - Mayfly Nymphs (2014). Available at: http://ifieldstudy.net/sns/outstanding_reports/2014/files/team25.pdf
- Hall, T. J. (1980). Influence of wing dam notching on aquatic macroinvertebrates in Pool 13, upper Mississippi River: the prenotching study. Wisconsin, 168. Available at: https://apps.dtic.mil/sti/pdfs/ADA096633.pdf
- Marden, J. H., Thomas, M. A. (2003). Rowing locomotion by a stonefly that possesses the ancestral pterygote condition of co-occurring wings and abdominal gills. Biological Journal of the Linnean Society, 79 (2), 341–349. doi: https://doi.org/10.1046/j.1095-8312.2003.00192.x
- Khazeyeva, L. A. (2007). Description of the larva of a stonefly from the family Chloroperlidae, genus Chloroperla Newman, 1836 of the northern slopes of the Central Caucasus region. Questions of Aquatic Entomology of Russia and Adjacent Lands: Third All-Russia Symposium on Amphibiotic and Aquatic Insects. Voronezh, 356–358. Available at: https://www.zin.ru/animalia/coleoptera/pdf/third_all_russia_symposium.pdf
- Collier, K. (1993). Flow preferences of aquatic invertebrates in the Tongariro River (Part 2 of 5). Wellington. Available at: https://www.doc.govt.nz/globalassets/documents/science-and-technical/sr60a.pdf
- De Brouwer, J. H. F., Besse-Lototskaya, A. A., ter Braak, C. J. F., Kraak, M. H. S., Verdonschot, P. F. M. (2016). Flow velocity tolerance of lowland stream caddisfly larvae (Trichoptera). Aquatic Sciences, 79 (3), 419–425. doi: https://doi.org/10.1007/s00027-016-0507-y
- Franken, R., Batten, S., Beijer, J., Gardeniers, J., Scheffer, M., Peeters, E. (2006). Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulexLinnaeus. Journal of the North American Benthological Society, 25 (3), 656–663. doi: https://doi.org/10.1899/0887-3593(2006)25[656:eoirac]2.0.co;2
- Han, J., Lee, D., Lee, S., Chung, S.-W., Kim, S., Park, M. et. al. (2019). Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed. Water, 11 (4), 718. doi: https://doi.org/10.3390/w11040718
- Kiselev, P. G. (Ed.) (1972). Spravochnik po gidravlicheskim raschetam. Moscow: «Energiya», 312.
- Arthington, A. H., Bhaduri, A., Bunn, S. E., Jackson, S. E., Tharme, R. E., Tickner, D. et. al. (2018). The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Frontiers in Environmental Science, 6. doi: https://doi.org/10.3389/fenvs.2018.00045
- Guidelines for Determination of Environmental Flows (e-flows) for Development Projects that Result in Impounding of Water in Streams/ Rivers (2018). Central Environmental Authority. Ministry of Mahaweli Development and Environmental. Available at: http://203.115.26.10/2018/EIA_PUB/e-flow.pdf
- Vodohospodarska sytuatsiya v baseini richky Pivdennyi Buh u 2017 rotsi. Available at: https://mk-vodres.davr.gov.ua/node/1148
- Bezsonov, Ye. M.; Malovanyi, M. S. (Ed.) (2020). Ekoloho-ekonomichni naslidky vid ruslovykh vodoskhovyshch: vitchyznianyi ta mizhnarodnyi dosvid. Rozdil 1 «Ekolohichni aspekty zberezhennia bioriznomanittia, monitorynh, audyt, systemnyi analiz ta otsinka ryzyku, vidnovliuvalni dzherela enerhiyi». Collective monograph «Sustainable Development: Environmental Protection. Energy Saving. Sustainable Environmental Management». Lviv, 184–214. doi: https://doi.org/10.23939/book.ecocongress.2020
- Khilchevskyi, V. K., Chunarov, O. V., Romas, M. I. et. al.; Khilchevskyi, V. K. (Ed.) (2009). Vodni resursy ta yakist richkovykh vod baseinu Pivdennoho Buhu. Kyiv: Nika tsentr, 184. Available at: https://www.researchgate.net/profile/Valentyn_Khilchevskyi/publication/316822383_Water_resources_and_quality_of_river_waters_of_basin_of_South_Bug_Vodni_resursi_ta_akist_rickovih_vod_basejnu_Pivdennogo_Bugu/links/591291e2a6fdcc963e7cf258/Water-resources-and-quality-of-river-waters-of-basin-of-South-Bug-Vodni-resursi-ta-akist-rickovih-vod-basejnu-Pivdennogo-Bugu.pdf
- Lyashenko, A., Slepnev, O., Makovsky, V., Sytnyk, Y., Grigorenko, T. (2018). Macrozoobenthos of water objects affected by the South-Ukrainian electric power-producing complex. Fisheries Science of Ukraine, 2, 43–58. doi: https://doi.org/10.15407/fsu2018.02.043
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Євген Миколайович Безсонов, Лілія Яківна Мунтян, Діана Олександрівна Крисінська
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.