Гідролого-стенобіонтний метод розрахунку санітарних попусків з водосховища

Автор(и)

  • Євген Миколайович Безсонов Чорноморський національний університет імені Петра Могили, Україна https://orcid.org/0000-0001-5745-3121
  • Лілія Яківна Мунтян Чорноморський національний університет імені Петра Могили, Україна https://orcid.org/0000-0001-8456-4564
  • Діана Олександрівна Крисінська Чорноморський національний університет імені Петра Могили, Україна https://orcid.org/0000-0002-3117-6039

DOI:

https://doi.org/10.15587/1729-4061.2021.229689

Ключові слова:

санітарний попуск, руслове водосховище, швидкість течії, нижній б’єф, вимоги гідробіонтів

Анотація

У практиці користування ресурсами річок, акумульованими у водосховищах, характерною є проблема необґрунтовано великого водозабору на господарсько-побутові потреби у збиток водній екосистемі. Важливим інструментом збалансування цих зв’язків є забезпечення санітарних попусків на основі комплексного аналізу закономірностей функціонування річки. І в розрізі прогресування негативного впливу водосховищ на цілісність екосистем річок недостатньо обґрунтованим слід розглядати вибір індикаторної гідробіоти під час розрахунку санітарних попусків. Вирішення цієї задачі, шляхом заповнення відповідної методичної ніші, дозволило обґрунтувати гідролого-стенобіонтний метод визначення санітарних попусків. В основу розроблених рішень покладено мінімально можливі значення толерантності стенобіонтів водних екосистем до швидкості течії. Відповідні цільові організми представлені п’ятьма групами представників макрозообентосу. Гідрологічні розрахунки, представлені у роботі, ґрунтуються на даних добових витрат води за 80 років та результатах польових досліджень глибини русла у меженний період. На цій основі визначено, що для рівнинних ділянок річок швидкість течії у нижньому б’єфі водосховищ має бути не менше 0,2 м/с. Співставлення кривої динаміки швидкості середньомісячного річкового стоку 95 % забезпеченості з мінімальними відповідними вимогами стенобіонтів дозволило визначити найбільш загрозливий для водної екосистеми період року – літню межень. Для водосховища у рівнинній частині річки, на основі розробленого методу, розрахунками обґрунтовано збільшення мінімального об’єму санітарного попуску на 40 % відносно діючого. Також встановлено, що середньорічні та середньосекундні об’єми санітарних попусків мають складати близько 38 % відповідного стоку річки. Отримані результати близькі до тих, які отримані на річках у Китаї, Ірані та США у межах комплексного аналізу гідрологічних, гідравлічних та гідробіологічних параметрів водної екосистеми

Біографії авторів

Євген Миколайович Безсонов, Чорноморський національний університет імені Петра Могили

Кандидат технічних наук

Кафедра екології

Лілія Яківна Мунтян, Чорноморський національний університет імені Петра Могили

Кандидатка технічних наук

Кафедра гігієни, соціальної медицини, громадського здоров’я та медичної інформатики

Діана Олександрівна Крисінська, Чорноморський національний університет імені Петра Могили

Кафедра екології

Посилання

  1. Landau, Yu., Chornomorov, A. (2020). Pivdennyi Buh: yak polipshyty vodozabezpechennia Mykolaivshchyny. Uriadovyi kurier. Available at: https://ukurier.gov.ua/uk/articles/pivdennij-bug-yak-polipshiti-vodozabezpechennya-mi/
  2. Panasyuk, I. V., Tomil’tseva, A. I., Zub, L. M. (2020). Basic approaches to preparing of operating rules for lowland reservoirs of small HPPs in terns of compliance with environmental requirements. Hidroenerhetyka Ukrainy, 3-4, 52–57. Available at: https://uhe.gov.ua/sites/default/files/2020-12/15.pdf
  3. Rytwinski, T., Taylor, J. J., Bennett, J. R., Smokorowski, K. E., Cooke, S. J. (2017). What are the impacts of flow regime changes on fish productivity in temperate regions? A systematic map protocol. Environmental Evidence, 6 (1). doi: https://doi.org/10.1186/s13750-017-0093-z
  4. Zeiringer, B., Seliger, C., Greimel, F., Schmutz, S. (2018). River Hydrology, Flow Alteration, and Environmental Flow. Riverine Ecosystem Management, 67–89. doi: https://doi.org/10.1007/978-3-319-73250-3_4
  5. Winton, R. S., Calamita, E., Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences, 16 (8), 1657–1671. doi: https://doi.org/10.5194/bg-16-1657-2019
  6. Arthington, A. H., Tharme, R. E., Brizga, S. O., Pusey, B.J., Kennard, M. J. (2003). Environmental flow assessment with emphasis on holistic methodologies. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries. Volume II. Sustaining Livelihoods and Biodiversity in the New Millennium. Available at: http://www.fao.org/3/ad526e/ad526e07.htm#bm07
  7. Mulligan, M., van Soesbergen, A., Sáenz, L. (2020). GOODD, a global dataset of more than 38,000 georeferenced dams. Scientific Data, 7 (1). doi: https://doi.org/10.1038/s41597-020-0362-5
  8. Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1 (4), 6–10. doi: https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2
  9. Yang, F., Xia, Z., Yu, L., Guo, L. (2012). Calculation and Analysis of the Instream Ecological Flow for the Irtysh River. Procedia Engineering, 28, 438–441. doi: https://doi.org/10.1016/j.proeng.2012.01.747
  10. Stalnaker, C., Lamb, B. L., Henriksen, J., Bovee, K., Bartholow, J. (1995). Instream flow incremental methodology. A primer for IFIM. Biological Report No. 29. National Biological Service, 45. Available at: https://books.google.com.ua/books?id=rEyGMq8TJOcC&printsec=frontcover&hl=ru&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  11. Physical Habitat Simulation (PHABSIM) Software for Windows. U.S. Geological Survey. Available at: https://www.usgs.gov/software/physical-habitat-simulation-phabsim-software-windows
  12. DRIFT. Available at: https://www.drift-eflows.com/about-drift/
  13. Davis, R., Hirji, R. (2003). Water resources and environment technical note C.2. Washington. Available at: https://iwlearn.net/resolveuid/7d6ea185fd753130f6558a39950d746b
  14. Reil, A., Skoulikaris, Ch., Alexandridis, T. K., Roub, R. (2018). Evaluation of riverbed representation methods for one-dimensional flood hydraulics model. Journal of Flood Risk Management, 11 (2), 169–179. doi: https://doi.org/10.1111/jfr3.12304
  15. Ekologicheskie popuski (2003). Publikatsii Treningovogo tsentra MKVK. Vypusk 1. Tashkent. Available at: http://www.cawater-info.net/library/rus/01_eco.pdf
  16. King, J. M., Tharme, R. E. (1994). Assessment of the Instream Flow Incremental Methodology, and initial development of alternative instream flow methodologies for South Africa. Water Research Commission, Report No. 295/1/94. Available at: http://www.wrc.org.za/wp-content/uploads/mdocs/295-1-941.pdf
  17. Minjian, C., Gaoxu, W., Huali, F., Liqun, W. (2012). The Calculation of River Ecological Flow for the Liao Basin in China. Procedia Engineering, 28, 715–722. doi: https://doi.org/10.1016/j.proeng.2012.01.796
  18. Sun, T., Yang, Z.-F. (2005). Calculation of environmental flows in river reaches based on ecological objectives. Huan Jing Ke Xue, 26 (5), 43–48. Available at: https://pubmed.ncbi.nlm.nih.gov/16366468/
  19. Huang, S., Chang, J., Huang, Q., Wang, Y., Chen, Y. (2014). Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation. Journal of Applied Mathematics, 2014, 1–9. doi: https://doi.org/10.1155/2014/127067
  20. Tan, G., Yi, R., Chang, J., Shu, C., Yin, Z., Han, S. et. al. (2018). A new method for calculating ecological flow: Distribution flow method. AIP Advances, 8 (4), 045118. doi: https://doi.org/10.1063/1.5022048
  21. Abdi, R., Yasi, M. (2015). Evaluation of environmental flow requirements using eco-hydrologic–hydraulic methods in perennial rivers. Water Science and Technology, 72 (3), 354–363. doi: https://doi.org/10.2166/wst.2015.200
  22. Global Environmental Flow Calculator. Available at: http://naturalresources-centralasia.org/assets/files/VALUES/ValuES_Method_Profile_Global_Flow_Calculator_EN.pdf
  23. IWMI Environmental Flow Calculators. Available at: https://www.iwmi.cgiar.org/resources/data-and-tools/models-and-software/environmental-flow-calculators/
  24. Vasil'ev, Yu. S., Hrisanov, N. I. (1991). Ekologiya ispol'zovaniya vozobnovlyayuschihsya energoistochnikov. Leningrad: Izdatel'stvo Leningradskogo universiteta, 343.
  25. Jansson, R. (2006). The effect of dams on biodiversity. Dams under Debate. Swedish Research Council Formas, 77–84. Available at: https://www.researchgate.net/publication/265914243_The_effect_of_dams_on_biodiversity
  26. Chunyan, Q., Yong, Z., Haiyan, Y., Beixin, W. (2013). Concordance among different aquatic insect assemblages and the relative role of spatial and environmental variables. Biodiversity Science, 21 (3), 326–333. doi: https://doi.org/10.3724/sp.j.1003.2013.08223
  27. Bezsonov, Y., Andreev, V., Smyrnov, V. (2016). Assessment of safety index for water ecological system. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 24–34. doi: https://doi.org/10.15587/1729-4061.2016.86170
  28. Dolédec, S., Lamouroux, N., Fuchs, U., Mérigoux, S. (2007). Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology, 52 (1), 145–164. doi: https://doi.org/10.1111/j.1365-2427.2006.01663.x
  29. Holt, E. A., Miller, S. W. (2010). Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Knowledge, 3 (10), 8. Available at: https://www.nature.com/scitable/knowledge/library/bioindicators-using-organisms-to-measure-environmental-impacts-16821310/
  30. Hoover, T. M., Richardson, J. S. (2009). Does water velocity influence optimal escape behaviors in stream insects? Behavioral Ecology, 21 (2), 242–249. doi: https://doi.org/10.1093/beheco/arp182
  31. Vilenica, M., Mičetić Stanković, V., Sartori, M., Kučinić, M., Mihaljević, Z. (2017). Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst. Knowledge & Management of Aquatic Ecosystems, 418, 14. doi: https://doi.org/10.1051/kmae/2017005
  32. Jacobus, L. M., Macadam, C. R., Sartori, M. (2019). Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services. Insects, 10 (6), 170. doi: https://doi.org/10.3390/insects10060170
  33. Bouchard, R. W. Jr. (2004). Guide to aquatic macroinvertebrates of the Upper Midwest. Water Resources Center, University of Minnesota, 208. Available at: https://dep.wv.gov/WWE/getinvolved/sos/Documents/Benthic/UMW/Ephemeroptera.pdf
  34. Aquatic Benthic Macroinvertebrates As Water Quality Indicators. Available at: https://www.wpwa.org/documents/education/Biological%20sampling.pdf
  35. Bubnov, A. G. et. al.; Grinevich, V. I. (Ed.) (2007). Biotestoviy analiz – integral'niy metod otsenki kachestva obektov okruzhayuschey sredy. Ivanovo, 112.
  36. Garbe, J., Beevers, L., Pender, G. (2016). The interaction of low flow conditions and spawning brown trout (Salmo trutta) habitat availability. Ecological Engineering, 88, 53–63. doi: https://doi.org/10.1016/j.ecoleng.2015.12.011
  37. Life in freshwater stream - Mayfly Nymphs (2014). Available at: http://ifieldstudy.net/sns/outstanding_reports/2014/files/team25.pdf
  38. Hall, T. J. (1980). Influence of wing dam notching on aquatic macroinvertebrates in Pool 13, upper Mississippi River: the prenotching study. Wisconsin, 168. Available at: https://apps.dtic.mil/sti/pdfs/ADA096633.pdf
  39. Marden, J. H., Thomas, M. A. (2003). Rowing locomotion by a stonefly that possesses the ancestral pterygote condition of co-occurring wings and abdominal gills. Biological Journal of the Linnean Society, 79 (2), 341–349. doi: https://doi.org/10.1046/j.1095-8312.2003.00192.x
  40. Khazeyeva, L. A. (2007). Description of the larva of a stonefly from the family Chloroperlidae, genus Chloroperla Newman, 1836 of the northern slopes of the Central Caucasus region. Questions of Aquatic Entomology of Russia and Adjacent Lands: Third All-Russia Symposium on Amphibiotic and Aquatic Insects. Voronezh, 356–358. Available at: https://www.zin.ru/animalia/coleoptera/pdf/third_all_russia_symposium.pdf
  41. Collier, K. (1993). Flow preferences of aquatic invertebrates in the Tongariro River (Part 2 of 5). Wellington. Available at: https://www.doc.govt.nz/globalassets/documents/science-and-technical/sr60a.pdf
  42. De Brouwer, J. H. F., Besse-Lototskaya, A. A., ter Braak, C. J. F., Kraak, M. H. S., Verdonschot, P. F. M. (2016). Flow velocity tolerance of lowland stream caddisfly larvae (Trichoptera). Aquatic Sciences, 79 (3), 419–425. doi: https://doi.org/10.1007/s00027-016-0507-y
  43. Franken, R., Batten, S., Beijer, J., Gardeniers, J., Scheffer, M., Peeters, E. (2006). Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulexLinnaeus. Journal of the North American Benthological Society, 25 (3), 656–663. doi: https://doi.org/10.1899/0887-3593(2006)25[656:eoirac]2.0.co;2
  44. Han, J., Lee, D., Lee, S., Chung, S.-W., Kim, S., Park, M. et. al. (2019). Evaluation of the Effect of Channel Geometry on Streamflow and Water Quality Modeling and Modification of Channel Geometry Module in SWAT: A Case Study of the Andong Dam Watershed. Water, 11 (4), 718. doi: https://doi.org/10.3390/w11040718
  45. Kiselev, P. G. (Ed.) (1972). Spravochnik po gidravlicheskim raschetam. Moscow: «Energiya», 312.
  46. Arthington, A. H., Bhaduri, A., Bunn, S. E., Jackson, S. E., Tharme, R. E., Tickner, D. et. al. (2018). The Brisbane Declaration and Global Action Agenda on Environmental Flows (2018). Frontiers in Environmental Science, 6. doi: https://doi.org/10.3389/fenvs.2018.00045
  47. Guidelines for Determination of Environmental Flows (e-flows) for Development Projects that Result in Impounding of Water in Streams/ Rivers (2018). Central Environmental Authority. Ministry of Mahaweli Development and Environmental. Available at: http://203.115.26.10/2018/EIA_PUB/e-flow.pdf
  48. Vodohospodarska sytuatsiya v baseini richky Pivdennyi Buh u 2017 rotsi. Available at: https://mk-vodres.davr.gov.ua/node/1148
  49. Bezsonov, Ye. M.; Malovanyi, M. S. (Ed.) (2020). Ekoloho-ekonomichni naslidky vid ruslovykh vodoskhovyshch: vitchyznianyi ta mizhnarodnyi dosvid. Rozdil 1 «Ekolohichni aspekty zberezhennia bioriznomanittia, monitorynh, audyt, systemnyi analiz ta otsinka ryzyku, vidnovliuvalni dzherela enerhiyi». Collective monograph «Sustainable Development: Environmental Protection. Energy Saving. Sustainable Environmental Management». Lviv, 184–214. doi: https://doi.org/10.23939/book.ecocongress.2020
  50. Khilchevskyi, V. K., Chunarov, O. V., Romas, M. I. et. al.; Khilchevskyi, V. K. (Ed.) (2009). Vodni resursy ta yakist richkovykh vod baseinu Pivdennoho Buhu. Kyiv: Nika tsentr, 184. Available at: https://www.researchgate.net/profile/Valentyn_Khilchevskyi/publication/316822383_Water_resources_and_quality_of_river_waters_of_basin_of_South_Bug_Vodni_resursi_ta_akist_rickovih_vod_basejnu_Pivdennogo_Bugu/links/591291e2a6fdcc963e7cf258/Water-resources-and-quality-of-river-waters-of-basin-of-South-Bug-Vodni-resursi-ta-akist-rickovih-vod-basejnu-Pivdennogo-Bugu.pdf
  51. Lyashenko, A., Slepnev, O., Makovsky, V., Sytnyk, Y., Grigorenko, T. (2018). Macrozoobenthos of water objects affected by the South-Ukrainian electric power-producing complex. Fisheries Science of Ukraine, 2, 43–58. doi: https://doi.org/10.15407/fsu2018.02.043

##submission.downloads##

Опубліковано

2021-04-30

Як цитувати

Безсонов, Є. М., Мунтян, Л. Я., & Крисінська, Д. О. (2021). Гідролого-стенобіонтний метод розрахунку санітарних попусків з водосховища. Eastern-European Journal of Enterprise Technologies, 2(10 (110), 18–26. https://doi.org/10.15587/1729-4061.2021.229689

Номер

Розділ

Екологія