One-dimensional mathematical models of tension and compression of solids
DOI:
https://doi.org/10.15587/1729-4061.2014.23308Keywords:
tension and compression processes, limiting transition to the continuum, Hooke’s lawAbstract
Mathematical models of tension and compression processes for one-dimensional solid systems based on behavior analysis at an applied constant load of chains of particles with finite mass are considered. One-, two-, and N-particle discrete models are built. For the latter, limiting transitions to the continuum (continuous models) are performed. The phenomenon of failure of the Hooke’s law for all models without considering the mechanical energy dissipation and its validity when taking into account the dissipation is revealed.
Relevance of the conducted researches is caused by previously unnoticed paradox: the Hooke’s law, which describes the steady state of a macroscopic body with constant load applied to it, is used as the basis for the elasticity theory, equations of which are dynamic. In addition, in the Hooke’s law there are no mechanical energy dissipation “traces”, which is a very rough idealization.
Telegraph tension-compression equation, alternative to the Lame’s equation in the elasticity theory is obtained. Unlike the latter, the equation found describes the evolving displacement field and can serve as a basis for generalizations: plasticity and creep equations in homogeneous and heterogeneous media. Relation, corresponding to the Hooke’s law and describing the steady state of a deformable rod taking into account the mechanical energy dissipation is obtained.
The obtained results are of theoretical and practical importance since determining relations between the Hooke’s law and discrete models and deriving telegraph viscoelasticity equations are prerequisites for improving the theory of deformation of solids and for the mathematical modeling of movements of real continuous media (rocks in particular).
References
- Надаи, А. Пластичность и разрушение твердых тел [Текст]: В 2-х томах, Т. 2 / А. Надаи; пер. с англ. – М: Мир, 1969. – 864 с.
- Ландау, Л. Д. Теория упругости [Текст] : Изд-е 4-е / Л. Д. Ландау, Е. М. Лифшиц. – М.: Наука, 1987. – 248 с.
- Фейнман, Р. Фейнмановские лекции по физике [Текст] / Р. Фейнман, Р. Лейтон, М. Сэндс // Физика сплошных сред. – 1966. – Вып. 7. – 290 с.
- Блехман, И. И. Механика и прикладная математика. Логика и особенности приложений математики [Текст] / И. И. Блех¬ман, А. Д. Мышкин, Я. Г. Пановко. – М.: Наука, 1983. – 328 с.
- Харламов, П. В. Очерки об основаниях механики. Мифы, заблуждения и ошибки [Текст] / П. В. Харламов. – Киев: Наукова думка, 1995. – 408 с.
- Венгеров, И. Р. Хроноартефакты термодинамики [Текст] / И. Р. Венгеров. – Донецк: Норд-пресс, 2005. – 236 с.
- Боргардт, А. А. Поле равномерно ускоренного релятивистского заряда [Текст] / А. А. Боргардт, Д. Я. Карпенко. – Препринт ДонФТИ-88-2 (139)-Донецк: ДонФТИ им. А.А. Галкина НАНУ, 1988. – 30 с.
- Гинзбург, И. Ф. Нерешенные проблемы фундаментальной физики [Текст] / И. Ф. Гинзбург // Успехи физических наук. – 2009. – Т. 179, № 5. – С. 525–529.
- Венгеров, И. Р. Теплофизика деформируемых твердых тел: IV. Модели макроуровня [Текст] / И. Р. Венгеров // Физика и техника высоких давлений. – 2008. – Т. 18, № 1. – С. 7–24.
- Вибрации в технике. Колебания линейных систем. Том 1 [Текст] : монография / под ред. В.В. Болотина. – М.: Машиностро¬ение, 1978. – 352 с.
- Рабинович, М. И. Введение теорию колебаний и волн [Текст] / М. И. Рабинович, Д. И. Трубецков. – М.: Наука, 1984. – 432 с.
- Адрианов, А. Д. Аппроксимация Паде и континуализация для одномерной цепочки масс [Текст] / А. Д. Адрианов // Мате¬матическое моделирование. – 2006. – Т. 18. – С. 43–58.
- Ландау, Л. Д. Механика [Текст] : Изд-е 2-е, исправл. / Л. Д. Ландау, Е. М. Лифшиц. – М.: Наука, 1965. – 204 с.
- Деч, Г. Руководство к практическому применению преобразования Лапласа и z-преобразования [Текст] / Г. Деч; пер. немецк. – М.: Наука, 1971. – 288 с.
- Малашенко, В. В. Влияние фононной вязкости и дислокационного взаимодействия на скольжение пары краевых дисло¬каций в кристалле с точечными дефекатами [Текст] / В. В. Малашенко // Физика твердого тела. – 2006. – Т. 48, Вып. 3. – С. 433–435.
- Дуков, В. М. Электродинамика [Текст] / В. М. Дуков. – М.: Высшая школа, 1975. – 248 с.
- Nadai, A. (1969). Plastichnost’ i razrushenie tverdyh tel. Mir, 864.
- Landau, L. D., Lifshic, E. M. (1987). Teorija uprugosti. Nauka, 248.
- Fejnman, R., Lejton, R., Sjends, M. (1966). Fejnmanovskie lekcii po fizike. Fizika sploshnyh sred, Vol. 7, 290.
- Blehman, I. I., Myshkin, A. D., Panovko, Ja. G. (1983). Mehanika i prikladnaja matematika. Logika i osobennosti prilozhenij matematiki. Nauka, 328.
- Harlamov, P. V. (1995). Ocherki ob osnovanijah mehaniki. Mify, zabluzhdenija i oshibki. Kiev: Naukova dumka, 408.
- Vengerov, I. R. (2005). Hronoartefakty termodinamiki. Doneck: Nord-press, 236.
- Borgardt, A. A., Karpenko, D. Ja. (1988). Pole ravnomerno uskorennogo reljativistskogo zarjada. Preprint DonFTI-88-2 (139)-Doneck: DonFTI im. A. A. Galkina NANU, 30.
- Ginzburg, I. F. (2009). Nereshennye problemy fundamental’noj fiziki. Uspehi fizicheskih nauk, Vol. 179, № 5, 525–529.
- Vengerov, I. R. (2008). Teplofizika deformiruemyh tverdyh tel: IV. Modeli makrourovnja. Fizika i tehnika vysokih davlenij, Vol. 18, № 1, 7–24.
- Vibracii v tehnike. Kolebanija linejnyh sistem (1978). Mashinostroenie, Vol. 1, 352 .
- Rabinovich, M. I., Trubeckov, D. I. (1984). Vvedenie teoriju kolebanij i voln. Nauka, 432.
- Adrianov, A. D. (2006). Approksimacija Pade i kontinual¬izacija dlja odnomernoj cepochki mass. Matematicheskoe mod¬elirovanie, Vol. 18, 43–58.
- Landau, L. D., Lifshic, E. M. (1965). Mehanika. Nauka, 204.
- Dech, G. (1971). Rukovodstvo k prakticheskomu primeneniju preobrazovanija Laplasa i z-preobrazovanija. Nauka, 288.
- Malashenko, V. V. (2006). Vlijanie fononnoj vjazkosti i dislokacionnogo vzaimodejstvija na skol’zhenie pary kraevyh dislokacij v kristalle s tochechnymi defekatami. Fizika tverdogo tela, Vol. 48, Issue 3, 433–435.
- Dukov, V. M. (1975). Jelektrodinamika. Vysshaja shkola, 248.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Игорь Романович Венгеров
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.