Simulation of shock interaction between body and free-surface fluid

Authors

  • Владимир Александрович Катан Oles Gonchar Dnipropetrovsk National University K. Marx Prospect , 35, city Dnepropetrovsk, Ukraine, 49000, Ukraine https://orcid.org/0000-0001-9167-2619

DOI:

https://doi.org/10.15587/1729-4061.2014.23330

Keywords:

shock interaction between body and free-surface fluid, shock motion

Abstract

The problem of interaction between the plate, placed at some angle to the free surface of the fluid at an instant change in the plate elements velocity with the fluid is solved in the paper. Such a task can simulate the behavior of the steering body or active vessel stabilizer, as well as the operation of various elements of automatic equipment of hydraulic systems. The feature of the considered problem is the possibility of the liquid separation on individual body surface areas, on which the normal velocity component of the body elements is directed opposite to the fluid.

The literature contains an analytical solution of a similar problem only for the particular case, when the plate is perpendicular to the free surface. In the paper, this result is generalized for the case of arbitrary angle, an exact analytical solution of problems for the attached flow at any angle is obtained and the special case of inclination, at which an exact solution also exists for the flow with forming a separation zone is found.

For an arbitrary angle of the plate, hydrodynamic problem taking into account the separation is solved in quadratures. The usefulness and importance of the obtained data is that, as a result of the research, the impulsive pressure on the plate sides, which can be used for defining the total impulse force and moment, if to interpret the plate as a steering body was determined. 

Author Biography

Владимир Александрович Катан, Oles Gonchar Dnipropetrovsk National University K. Marx Prospect , 35, city Dnepropetrovsk, Ukraine, 49000

Senior lecturer

Department of Mathematical Modelling

References

  1. Басин, М. А. Гидроаэродинамика крыла вблизи границы раздела сред [Текст] / М. А. Басин, В. П. Шадрин. – Л.: Судостроение, 1980. – 304 с.
  2. Чугаев, Р. Р. Гидравлика [Текст] / Р. Р. Чугаев. – Л.: Энергия, 1970. – 552 с.
  3. Норкин, М. В. Смешанные задачи гидродинамического удара [Текст] / М. В. Норкин. – 2007. – 136 с.
  4. Седов, Л. И. Плоские задачи гидромеханики и аэродинамики [Текст] / Л. И. Седов. – М.: Наука, 1966. – 448 с.
  5. Кудрявцева, Н. А. Горизонтальный удар плавающего эллипса о несжимаемую жидкость [Текст] / Н. А. Ку¬дрявцева // Прикл. математика и механика. – 1960. – Т. 24. – С. 258–261.
  6. Корчагин, В. С. Отрывной удар по цилиндру, полупогруженному в жидкость [Текст] / В. С. Корчагин. – 1978. – № 4. – C. 25–27.
  7. Норкин, М. В. Методы решения нелинейных задач гидродинамического удара в ограниченных областях [Текст] / М. В. Норкин // Изв. РАН. МЖГ. – 2005. – № 4. – С. 138–150.
  8. Норкин, М. В. Отрывной удар эллиптического цилиндра, плавающего на поверхности идеальной несжимаемой жидкости конечной глубины [Текст] / М. В. Норкин // Изв. РАН. МЖГ. – 2008. – № 1. – С. 120–132.
  9. Норкин, М. В. Отрывной удар круглого диска, плавающего на поверхности идеальной несжимаемой жидкости бесконечной глубины [Текст] / М. В. Норкин // ПМТФ. – 2009. – Т. 50, № 4. – С. 76–86.
  10. Akkerman, I. Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics [Text] / I. Akker¬man, Y. Bazilevs, M. W. Farthing, C. E. Kees, D. J. Benson // J. Appl. Mech. – 2011. – Vol. 79, № 1. – P. 35-45.
  11. Лаврентьев, М. А. Методы теории функций комплексного переменного [Текст] / М. А. Лаврентьев, Б. В. Шабат. – М.: Наука, 1973. – 736 с.
  12. Гахов, Ф. Д. Краевые задачи [Текст] / Ф. Д. Гахов. – М.: Наука, 1977. – 640 с.
  13. Мусхелишвили, Н. И. Сингулярные интегральные уравнения [Текст] / Н. И. Мусхелишвили. – М.: Наука, 1968. – 512 с.
  14. Basin, M. A. (1980). Hydro aerodynamics of wing near the boundary between two environment. Leningrad, USSR: Shipbuilding, 304.
  15. Chugayev, R. R. (1970). Hydraulics. Leningrad, USSR: Energy, 552.
  16. Norkin, M. V. (2007). Mixed problems of hydrodynamic shock. Rostov-na-Donu, Russia, 136.
  17. Sedov, L. I. (1966). Plane problems of hydrodynamics and aerodynamics. Moscow, USSR: Science, 448.
  18. Kudryavtseva, N. A. (1960). Horizontal impact of floating ellipse on an incompressible fluid. Applied Mathematics and Mechanics, 24, 258–261.
  19. Korchagin, V. S. (1978). Tear-off impact on the semi-emergent cylinder in fluid. North Caucasian scientific center of higher education. Series: natural. Science, 4, 25–27.
  20. Norkin, M. V. (2005). Methods of solving nonlinear problems of hydrodynamic impact in limited areas. ed. Ran. Mzhg., 4, 138–150.
  21. Norkin, M. V. (2008). Separating impact on an elliptic cylinder floating on the surface of an ideal incompressible finite-depth fluid. Fluid Dynamics, 43, 1, 105-117.
  22. Norkin, M. V. (2009). Separating impact on an circular disk floating on the surface of an ideal incompressible infinite-depth fluid. Journal of Applied Mechanics and Technical Physics, 50, № 4, 76-86.
  23. Akkerman, I. (2011). Free-Surface Flow and Fluid-Object In¬teraction Modeling With Emphasis on Ship Hydrodynamics. J. Appl. Mech. 79, № 1, 35-45.
  24. Lavrent’yev, M. A. (1973). Methods of the theory of functions of a complex variable. Moscow, USSR : Science, 736.
  25. Gakhov, F. D. (1977). Boundary Value Problems. Moscow, USSR: Science, 640.
  26. Muskhelishvili, N. I. (1968). Singular integral equations, Moscow, USSR: Science, 512.

Published

2014-04-08

How to Cite

Катан, В. А. (2014). Simulation of shock interaction between body and free-surface fluid. Eastern-European Journal of Enterprise Technologies, 2(7(68), 32–36. https://doi.org/10.15587/1729-4061.2014.23330

Issue

Section

Applied mechanics