Development of a concept for building a critical infrastructure facilities security system
DOI:
https://doi.org/10.15587/1729-4061.2021.233533Keywords:
critical infrastructure, security system, threat classifier, concept, modeling methodAbstract
To effectively protect critical infrastructure facilities (CIF), it is important to understand the focus of cybersecurity efforts. The concept of building security systems based on a variety of models describing various CIF functioning aspects is presented.
The development of the concept is presented as a sequence of solving the following tasks. The basic concepts related to cyberattacks on CIF were determined, which make it possible to outline the boundaries of the problem and determine the level of formalization of the modeling processes. The proposed threat model takes into account possible synergistic/emergent features of the integration of modern target threats and their hybridity. A unified threat base that does not depend on CIF was formed. The concept of modeling the CIF security system was developed based on models of various classes and levels. A method to determine attacker's capabilities was developed. A concept for assessing the CIF security was developed, which allows forming a unified threat base, assessing the signs of their synergy and hybridity, identifying critical CIF points, determining compliance with regulatory requirements and the state of the security system. The mathematical tool and a variety of basic models of the concept can be used for all CIFs, which makes it possible to unify preventive measures and increase the security level. It is proposed to use post-quantum cryptography algorithms on crypto-code structures to provide security services. The proposed mechanisms provide the required stability (230–235 group operations), the rate of cryptographic transformation is comparable to block-symmetric ciphers (BSC) and reliability (Perr 10–9–10–12)
References
- (U//FOUO) Leftwing Extremists Likely to Increase Use of Cyber Attacks over the Coming Decade (2016). Washington: Department of Homeland Security. Available at: https://fas.org/irp/eprint/leftwing.pdf
- Stouffer, K., Pillitteri, V., Lightman, S., Abrams, M., Hans, A. (2015). Guide to Industrial Control Systems (ICS) Security. National Institute of Standard and Technology. Available at: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
- Stoddart, K. (2016). UK cyber security and critical national infrastructure protection. International Affairs, 92 (5), 1079–1105. doi: http://doi.org/10.1111/1468-2346.12706
- Konstantas, J. (2016, April 19). Dam Hackers! The Rising Risks to ICS and SCADA Environments. Security Week. Available at: http://www.securityweek.com/dam-hackers-rising-risks-ics-and-scada-environments
- Westervelt, R. (2012). Old Application Vulnerabilities, Misconfigurations Continue to Haunt. TechTarget. Available at: https://searchsecurity.techtarget.com/
- Ashford, W. (2014). Industrial control systems: What are the security challenges? Computer Weekly. Available at: http://www.computerweekly.com/news/2240232680/Industrial-control-systems-What-are-the-security-challenges
- Schneider, J., Obermeier, S., Schlegal, R. (2015). Cyber Security maintenance for SCADA systems. 15 Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security Research, 89–94. doi: http://doi.org/10.14236/ewic/ics2015.10
- Russon, M. (2016). How hackers could cripple the UK: Doomsday infrastructure cyber attacks would cost country £442bn. International Business Times. Available at: http://www.ibtimes.co.uk/how-hackers-could-cripple-uk-critical-infrastructure-cyberattacks-would-cost-country-442bn-1554509
- Fjäder, C. (2014). The nation-state, national security and resilience in the age of globalisation. Resilience, 2 (2), 114–129. doi: http://doi.org/10.1080/21693293.2014.914771
- Holt, T. J., Bossler, A. M., Seigfried-Spellar, K. C. (2015). Cybercrime And Digital Forensics: An Introduction. New York: Routledge, 500. doi: http://doi.org/10.4324/9781315777870
- Charlton, C. (2017). Armchair Warriors: Terrifying new generation of ‘cybernative’ ISIS terrorists could target ‘Facebook and West’s energy grids’ in a bid to cause mass panic and mayhem. The Sun. Available at: https://www.thesun.co.uk/news/2643688/cyber-terrorism-attacks-threat-level-isis-facebook-energy/
- Denning, D. E. (2000). Cyber terrorism: The Logic Bomb versus the Truck Bomb. Global Dialogue, 2 (4), 29–37.
- Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et. al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105)), 6–19. doi: http://doi.org/10.15587/1729-4061.2020.205702
- Hryshchuk, R., Yevseiev, S., Shmatko, A. (2018). Construction methodology of information security system of banking information in automated banking systems. Vienna: Premier Publishing s. r. o., 284. doi: http://doi.org/10.29013/r.hryshchuk_s.yevseiev_a.shmatko.cmissbiabs.284.2018
- Kondratov, S., Bobro, D., Horbulin, V. et. al.; Sukhodolia, O. (Ed.) (2017). Developing The Critical Infrastructure Protection System in Ukraine. Kyiv: NISS, 184.
- Marsh, R. T. (Ed.) (1997). Critical Infrastructures: Protecting America’s Infrastructures. United States Government Printing Office. Report of the President’s Commission on Critical Infrastructure Protection. Washington.
- Abele-Wigert, I., Dunn, M., Wenger, A., Mauer, V. (Eds.) (2006). International CIIP Handbook 2006: An Inventory of 20 National and 6 International Critical Information Infrastructure Protection Policies. Center for Security Studies. Vol. I. ETH Zurich. Zurich, 495.
- Dunn, M., Mauer, V., Abele-Wigert, I. (Eds.) (2006). Ineternational CIIP Handbook 2006: Analyz- ing Issues, Challenges, and Prospects. Center for Security Studies. Vol. II. ETH Zurich. Zurich, 238.
- Assaf, D. (2008). Models of critical information infrastructure protection. International Journal of Critical Infrastructure Protection, 1, 6–14. doi: http://doi.org/10.1016/j.ijcip.2008.08.004
- Lagadec, P.(1981). La Civilisation du Risque: Catastrophes Technologiques et Responsabilite´ Sociale. Science Ouverte. Paris: E´ditions du Seuil, 21.
- Beck, U. (1986). Risikogesellschaft: Auf dem Weg in eine andere Moderne. Frankfurt: Suhrkamp.
- Perrow, C. (1984). Normal Accidents: Living with High-Risk Technologies. New York: Basic Books, 386.
- Rinaldi, S. M., Peerenboom, J. P., Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems, 21 (6), 11–25. doi: http://doi.org/10.1109/37.969131
- Casalicchio, E., Galli, E., Tucci, S.; Setola, R., Geretshuber, S. (Eds.) (2009). Modeling and Simulation of Complex Interdependent Systems: A Federated Agent-Based Approach. CRITIS 2008. LNCS. Heidelberg: Springer, 5508, 72–83. doi: http://doi.org/10.1007/978-3-642-03552-4_7
- Haimes, Y. Y., Jiang, P. (2001). Leontief-Based Model of Risk in Complex Interconnected Infrastructures. Journal of Infrastructure Systems, 7 (1), 1–12. doi: http://doi.org/10.1061/(asce)1076-0342(2001)7:1(1)
- Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J. R., Lian, C., Crowther, K. G. (2005). Inoperability Input-Output Model for Interdependent Infrastructure Sectors. I: Theory and Methodology. Journal of Infrastructure Systems, 11 (2), 67–79. doi: http://doi.org/10.1061/(asce)1076-0342(2005)11:2(67)
- Santos, J. R., Haimes, Y. Y. (2004). Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures*. Risk Analysis, 24 (6), 1437–1451. doi: http://doi.org/10.1111/j.0272-4332.2004.00540.x
- Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J., Crowther, K., Lian, C. (2005). Inoperability Input-Output Model for Interdependent Infrastructure Sectors. II: Case Studies. Journal of Infrastructure Systems, 11 (2), 80–92. doi: http://doi.org/10.1061/(asce)1076-0342(2005)11:2(80)
- Setola, R.; Goetz, E., Shenoi, S. (Eds.) (2007). Analysis of Interdependencies Between Italy’s Economic Sectors. Critical Infrastructure Protection: Proceedings of the First Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP. Springer: Hanover, 253, 311–321. doi: http://doi.org/10.1007/978-0-387-75462-8_22
- Andrijcic, E., Horowitz, B. (2006). A Macro-Economic Framework for Evaluation of Cyber Security Risks Related to Protection of Intellectual Property. Risk Analysis, 26 (4), 907–923. doi: http://doi.org/10.1111/j.1539-6924.2006.00787.x
- Haimes, Y. Y., Chittester, C. G. (2005). A Roadmap for Quantifying the Efficacy of Risk Management of Information Security and Interdependent SCADA Systems. Journal of Homeland Security and Emergency Management, 2 (2). doi: http://doi.org/10.2202/1547-7355.1117
- Crowther, K. G. (2008). Decentralized risk management for strategic preparedness of critical infrastructure through decomposition of the inoperability input–output model. International Journal of Critical Infrastructure Protection, 1, 53–67. doi: http://doi.org/10.1016/j.ijcip.2008.08.009
- Tanaka, H. (2009). Quantitative Analysis of Information Security Interdependency between Industrial Sectors. Proceedings of the 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM 2009). Lake Buena Vista: IEEE Computer Society Press, 574–583. doi: http://doi.org/10.1109/esem.2009.5314218
- Lian, C., Haimes, Y. Y. (2006). Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model. Systems Engineering, 9 (3), 241–258. doi: http://doi.org/10.1002/sys.20051
- Barker, K., Santos, J. R. (2010). Measuring the efficacy of inventory with a dynamic input–output model. International Journal of Production Economics, 126 (1), 130–143. doi: http://doi.org/10.1016/j.ijpe.2009.08.011
- Santos, J. R. (2008). Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial & Management Optimization, 4 (3), 489–510. doi: http://doi.org/10.3934/jimo.2008.4.489
- Jung, J. (2009). Probabilistic Extension to the Inoperability Input-Output Model: P-IIM. Charlottesville: University of Virginia.
- Santos, J. R., Haimes, Y. Y., Lian, C. (2007). A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies. Risk Analysis, 27 (5), 1283–1297. doi: http://doi.org/10.1111/j.1539-6924.2007.00957.x
- Nieuwenhuijs, A., Luiijf, E., Klaver, M.; Papa, M., Shenoi, S. (Eds.) (2008). Modeling Dependencies In Critical Infrastructures. Critical Infrastructure Protection II: Proceedings of the Second Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP. Heidelberg: Springer, 290, 205–213. doi: http://doi.org/10.1007/978-0-387-88523-0_15
- Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S. D., Setola, R. (2008). Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4 (1/2), 63–79. doi: http://doi.org/10.1504/ijcis.2008.016092
- Panzieri, S., Setola, R. (2008). Failures propagation in critical interdependent infrastructures. International Journal of Modelling, Identification and Control, 3 (1), 69–78. doi: http://doi.org/10.1504/ijmic.2008.018186
- Oliva, G., Panzieri, S., Setola, R. (2010). Agent-based input-output interdependency model. International Journal of Critical Infrastructure Protection, 3(2), 76–82. doi: http://doi.org/10.1016/j.ijcip.2010.05.001
- Rinaldi, S. M. (2004). Modeling and Simulating Critical Infrastructures and Their Interdependencies. Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004). Big Island: IEEE Computer Society Press, 1–8. doi: http://doi.org/10.1109/hicss.2004.1265180
- Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications, 480.
- Forrester, J. W. (1961). Principles of Systems. Waltham: Pegasus Communications.
- Gonzalez, J. J., Sarriegi, J. M., Gurrutxaga, A.; Lo´pez, J. (Ed.). A Framework for Conceptualizing Social Engineering Attacks. CRITIS 2006. LNCS. Heidelberg: Springer, 4347, 79–90. doi: http://doi.org/10.1007/11962977_7
- Sarriegi, J. M., Santos, J., Torres, J. M., Imizcoz, D., Egozcue, E., Liberal, D.: Lopez, J., Hammerli, B. M. (Eds.) (2008). Modeling and Simulating Information Security Management. CRITIS 2007. LNCS. Heidelberg: Springer, 5141, 327–336. doi: http://doi.org/10.1007/978-3-540-89173-4_27
- Pasqualini, D., Witkowski, M. S., Klare, P. C., Patelli, P., Cleland, C. A.; Großler, A., Rouwette, E. A. J. A., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2006). A Model for a Water Potable Distribution System and its Impacts resulting from a Water Contamination Scenario. Proceedings of the 24th International Conference of the System Dynamics Society. Nijmegen: Wiley, 99–100.
- Bush, B. B., Dauelsberg, L. R., LeClaire, R. J., Powell, D. R., DeLand, S. M., Samsa, M. E. (2005). Critical Infrastructure Protection Decision Support System (CIP/DSS) Project Overview. Tech. Rep. LA-UR-05-1870. Los Alamos: Los Alamos National Laboratory.
- LeClaire, R., Bush, B., Dauelsberg, L., Powell, D.; Sterman, J. D., Repenning, N. P., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2005). Critical Infrastructure Protection Decision Support System. Proceedings of the 23rd International Conference of the System Dynamics Society. Boston: System Dynamics Society, 97.
- Dauelsberg, L., Outkin, A.; Sterman, J. D., Repenning, N. P., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2005). Modeling Economic Impacts to Critical Infrastructures in a System Dynamics Framework. Proceedings of the 23rd International Conference of the System Dynamics Society. Boston: System Dynamics Society, 63.
- LeClaire, R., O’Reilly, G.; Sterman, J. D., Repenning, N. P., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2005). Leveraging a High Fidelity Switched Network Model to Inform a System Dynamics Model of the Telecommunications Infrastructure. Proceedings of the 23rd In- ternational Conference of the System Dynamics Society. Boston: System Dynamics Society, 97.
- Min, H.-S. J., Beyeler, W., Brown, T., Son, Y. J., Jones, A. T. (2007). Toward modeling and simulation of critical national infrastructure interdependencies. IIE Transactions, 39 (1), 57–71. doi: http://doi.org/10.1080/07408170600940005
- United States Department of Commerce, National Institute of Standards and Technology, Computer Systems Laboratory: Integration Definition for Function Modeling (IDEF0) (1993). United States Draft Federal Information Standard, 183.
- Berard, C. (2010). Group Model Building Using System Dynamics: An Analysis of Methodological Frameworks. Electronic Journal of Business Research Methods, 8 (1), 35–45.
- Hernantes, J., Lauge, A., Labaka, L., Rich, E. H., Sveen, F. O., Sarriegi, J. M. et. al. (2011). Collaborative Modeling of Awareness in Critical Infrastructure Protection. Proceedings of the 44th Hawaii International International Conference on Systems Science (HICSS-44 2011). Koloa: IEEE Press. doi: http://doi.org/10.1109/hicss.2011.113
- Bier, V. M., Ferson, S., Haimes, Y. Y., Lambert, J. H., Small, M. J. (2004). Risk of Extreme and Rare Events: Lessons from a Selection of Approaches. Risk Analysis and Society: An Interdisciplinary Characterization of the Field. Cambridge: Cambridge University Press, 74–118. doi: http://doi.org/10.1017/cbo9780511814662.004
- Bier, V. M. (2001). Game Theoretic Models for Critical Infrastructure Protection. Risk Analysis in an Interconnected World.
- von Neumann, J., Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton: Princeton University Press.
- Fudenberg, D., Tirole, J. (1991). Game Theory. Cambridge: MIT Press.
- Osborne, M. J., Rubinstein, A. (1994). A Course in Game Theory. Cambridge: MIT Press.
- Branzel, R., Dimitrov, D., Tijs, S. (2008). Models in Cooperative Game Theory. Heidelberg: Springer. doi: http://doi.org/10.1007/978-3-540-77954-4
- Haywood, O. G. (1954). Military Decision and Game Theory. Journal of the Operations Research Society of America, 2(4), 365–385. doi: http://doi.org/10.1287/opre.2.4.365 ]
- Hamilton, T., Mesic, R. (2004). A Simple Game-Theoretic Approach to Suppression of Enemy Defenses and Other Time Critical Target Analyses. Santa Monica. doi: http://doi.org/10.7249/rb108
- Brams, S., Kilgour, M. D. (1988). Game Theory and National Security. Oxford: Basil Blackwell, 199.
- Burke, D.A. (1999). Towards a Game Theory Model of Information Warfare. Air Force Institute of Technology, Wright-Patterson Air Force Base.
- Major, J. A. (2002). Advanced Techniques for Modeling Terrorism Risk. The Journal of Risk Finance, 4 (1), 15–24. doi: http://doi.org/10.1108/eb022950
- Sandler, T., Arce, D. G. (2003). Terrorism & Game Theory. Simulation & Gaming, 34 (3), 319–337. doi: http://doi.org/10.1177/1046878103255492
- Sandler, T., Siqueira, K. (2008). Games and Terrorism. Simulation & Gaming, 40 (2), 164–192. doi: http://doi.org/10.1177/1046878108314772
- Liu, D., Wang, X., Camp, J. (2008). Game-theoretic modeling and analysis of insider threats. International Journal of Critical Infrastructure Protection, 1, 75–80. doi: http://doi.org/10.1016/j.ijcip.2008.08.001
- Jenelius, E., Westin, J., Holmgren, Å. J. (2010). Critical infrastructure protection under imperfect attacker perception. International Journal of Critical Infrastructure Protection, 3 (1), 16–26. doi: http://doi.org/10.1016/j.ijcip.2009.10.002
- Yoshida, M., Kobayashi, K. (2010). Disclosure Strategies for Critical Infrastructure against Terror Attacks. Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC 2010). Istanbul: IEEE Press, 3194–3199. doi: http://doi.org/10.1109/icsmc.2010.5642277
- Lakdawalla, D.N., Zanjani, G. (2004). Insurance, Self-Protection, and the Economics of Terrorism. Tech. Rep. WR-171-ICJ, RAND Corporation. Santa Monica.
- Woo, G. (2002). Quantitative Terrorism Risk Assessment. The Journal of Risk Finance, 4 (1), 7–14. doi: http://doi.org/10.1108/eb022949
- Bier, V., Oliveros, S., Samuelson, L. (2007). Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker. Journal of Public Economic Theory, 9 (4), 563–587. doi: http://doi.org/10.1111/j.1467-9779.2007.00320.x
- Bolloba´s, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics. Vol. 184. Berlin: Springer.
- Bolloba´s, B., Kozma, R., Miklo´s, D. (Eds.) (2008). Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies. Vol. 18. Budapest: Ja´nos Bolyai Mathematical Society and Springer. doi: http://doi.org/10.1007/978-3-540-69395-6
- Barabási, A.-L., Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286 (5439), 509–512. doi: http://doi.org/10.1126/science.286.5439.509
- Albert, R., Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74 (1), 47–97. doi: http://doi.org/10.1103/revmodphys.74.47
- Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45 (2), 167–256. doi: http://doi.org/10.1137/s003614450342480
- Newman, M., Baraba´si, A. L., Watts, D. J. (Eds.) (2006). The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton: Princeton University Press, 592.
- Flaxman, A. D., Frieze, A. M., Vera, J. (2007). Adversarial Deletion in a Scale-Free Random Graph Process. Combinatorics, Probability and Computing, 16 (2), 261–270. doi: http://doi.org/10.1017/s0963548306007681
- Albert, R., Jeong, H., Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406 (6794), 378–382. doi: http://doi.org/10.1038/35019019
- Cohen, R., Erez, K., ben-Avraham, D., Havlin, S. (2001). Breakdown of the Internet under Intentional Attack. Physical Review Letters, 86 (16), 3682–3685. doi: http://doi.org/10.1103/physrevlett.86.3682
- Motter, A. E., Lai, Y.-C. (2002). Cascade-based attacks on complex networks. Physical Review E, 66 (6), 378–382. doi: http://doi.org/10.1103/physreve.66.065102
- Wang, X., Guan, S., Heng Lai, C. (2009). Protecting infrastructure networks from cost-based attacks. New Journal of Physics, 11 (3), 033006. doi: http://doi.org/10.1088/1367-2630/11/3/033006
- Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27 (1), 55–71. doi: http://doi.org/10.1016/j.socnet.2004.11.008
- Barton, D. C., Stamber, K. L. (2000). An Agent-Based Microsimulation of Critical Infrastructure Systems. Tech. Rep. SAND2000-0808C. Sandia National Laboratories. Albuquerque.
- North, M.; Sallach, D., Wolsko, T. (Eds.) (2000). Agent-Based Modeling of Complex Infrastructures. Proceedings of the Workshop on Simulation of Social Agents: Architectures and Institutions. ANL/DIS/TM-60. Chicago: University of Chicago and Argonne National Laboratory, 239–250.
- Panzieri, S., Setola, R., Ulivi, G. (2004). An Agent Based Simulator for Critical Interdependent Infrastructures. Proceedings of the 2nd International Conference on Critical Infrastructures (CRIS 2004). Grenoble.
- Balducelli, C., Bologna, S., Pietro, A. D., Vicoli, G. (2005). Analysing interdependencies of critical infrastructures using agent discrete event simulation. International Journal of Emergency Management, 2 (4), 306–318. doi: http://doi.org/10.1504/ijem.2005.008742
- Porcellinis, S. D., Setola, R., Panzieri, S., Ulivi, G. (2008). Simulation of heterogeneous and interdependent critical infrastructures. International Journal of Critical Infrastructures, 4 (1/2), 110–128. doi: http://doi.org/10.1504/ijcis.2008.016095
- Dudenhoeffer, D. D., Permann, M. R., Manic, M. (2006). CIMS: A Framework for Infrastructure Interdependency Modeling and Analysis. Proceedings of the 2006 Winter Simulation Conference (WSC 2006). Phoenix: IEEE Press, 478. doi: http://doi.org/10.1109/wsc.2006.323119
- Dudenhoeffer, D. D., Permann, M. R., Sussman, E. M. (2002). A Parallel Simulation Framework for Infrastructure Modeling and Analysis. Proceedings of the 34th Winter Simulation Conference (WSC 2002). San Diego: IEEE Press, 1971. doi: http://doi.org/10.1109/wsc.2002.1166498
- Zhu, G.-Y., Henson, M. A., Megan, L. (2001). Dynamic modeling and linear model predictive control of gas pipeline networks. Journal of Process Control, 11 (2), 129–148. doi: http://doi.org/10.1016/s0959-1524(00)00044-5
- Han, Z. Y., Weng, W. G. (2010). An integrated quantitative risk analysis method for natural gas pipeline network. Journal of Loss Prevention in the Process Industries, 23 (3), 428–436. doi: http://doi.org/10.1016/j.jlp.2010.02.003
- Wolthusen, S. D. (2005). GIS-based Command and Control Infrastructure for Critical Infrastructure Protection. Proceedings of the First IEEE International Workshop on Critical Infrastructure Protection (IWCIP 2005), 40–47. doi: http://doi.org/10.1109/iwcip.2005.12
- Patterson, S. A., Apostolakis, G. E. (2007). Identification of critical locations across multiple infrastructures for terrorist actions. Reliability Engineering & System Safety, 92 (9), 1183–1203. doi: http://doi.org/10.1016/j.ress.2006.08.004
- Yevseiev, S., Korolyov, R., Tkachov, A., Laptiev, O., Opirskyy, I., Soloviova, O. (2020). Modification of the algorithm (OFM) S-box, which provides increasing crypto resistance in the post-quantum period. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 8725–8729. doi:10.30534/ijatcse/2020/261952020
- Barabash, O., Laptiev, O., Kovtun, O., Leshchenko, O., Dukhnovska, K., Biehun, A. (2020). The Method dynavic TF-IDF. International Journal of Emerging Trends in Engineering Research, 8 (9), 5712–5718. doi: http://doi.org/10.30534/ijeter/2020/130892020
- Barabash, O., Laptiev, O., Tkachev, V., Maystrov, O., Krasikov, O., Polovinkin, I. (2020). The Indirect method of obtaining Estimates of the Parameters of Radio Signals of covert means of obtaining Information. International Journal of Emerging Trends in Engineering Research, 8 (8), 4133–4139. doi: http://doi.org/10.30534/ijeter/2020/17882020
- Savchenko, V., Ilin, O., Hnidenko, N., Tkachenko, O., Laptiev, O., Lehominova, S. (2020). Detection of Slow DDoS Attacks based on User’s Behavior Forecasting. International Journal of Emerging Trends in Engineering Research, 8 (5), 2019–2025. doi: http://doi.org/10.30534/ijeter/2020/90852020
- Berkman, L., Barabash, O., Tkachenko, O., Musienko, A., Laptiev, O., Salanda, I. (2020). The Intelligent Control System for infocommunication networks. International Journal of Emerging Trends in Engineering Research, 8 (5), 1920–1925. doi: http://doi.org/10.30534/ijeter/2020/73852020
- Laptiev, O., Shuklin, G., Hohonianc, S., Zidan, A., Salanda, I. (2019). Dynamic model of Ceber Defence Diagnostics of information Systems with the Use of Fozzy Technologies IEEE ATIT 2019 Conference Proceedings. Kyiv, 116–120. doi: http://doi.org/10.1109/atit49449.2019.9030465
- Laptiev, O., Stefurak, O., Polovinkin, I., Barabash, O., Savchenko, V., Zelikovska, O. (2020). The method of improving the signal detection quality by accounting for interference. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 172–176.
- Laptiev, O., Savchenko, V., Yevseiev, S., Haidur, H., Gakhov, S., Hohoniants, S. (2020). The new method for detecting signals of means of covert obtaining information. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 176–181.
- Sobchuk, V., Pichkur, V., Barabash, O., Laptiev O., Kovalchuk, I., Zidan, A. (2020). Algorithm of control of functionally stable manufacturing processes of enterprises. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 206–211.
- Savchenko, V., Laptiev, O., Kolos O., Lisnevskyi R., Ivannikova V., Ablazov, I. (2020). Hidden Transmitter Localization Accuracy Model Based on Multi-Position Range Measurement. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings Kyiv, 246–251.
- Yevseiev, S., Ponomarenko, V., Ponomarenko, V., Rayevnyeva, O., Rayevnyeva, O. (2017). Assessment of functional efficiency of a corporate scientificeducational network based on the comprehensive indicators of quality of service. Eastern-European Journal of Enterprise Technologies, 6 (2 (90)), 4–15. doi: http://doi.org/10.15587/1729-4061.2017.118329
- Yevseiev, S., Tsyhanenko, O., Ivanchenko, S., Aleksiyev, V., Verheles, D., Volkov, S. et. al. (2018). Practical implementation of the Niederreiter modified cryptocode system on truncated elliptic codes. Eastern-European Journal of Enterprise Technologies, 6 (4 (96)), 24–31. doi: http://doi.org/10.15587/1729-4061.2018.150903
- Yevseiev, S., Tsyhanenko, O., Gavrilova, A., Guzhva, V., Milov, O., Moskalenko, V. et. al. (2019). Development of Niederreiter hybrid crypto-code structure on flawed codes. Eastern-European Journal of Enterprise Technologies, 1 (9 (97)), 27–38. doi: http://doi.org/10.15587/1729-4061.2019.156620
- Tsyhanenko, O., Yevseiev, S., Milevskyi, S. (2019). Using the Flawed Codes In Niederreiter Crypto-Code Structure. Short Paper Proceedings of the 1st International Conference on Intellectual Systems and Information Technologies (ISIT 2019). Odessa, 17–19.
- Yevseiev, S., Kots, H., Minukhin, S., Korol, O., Kholodkova, A. (2017). The development of the method of multifactor authentication based on hybrid cryptocode constructions on defective codes. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 19–35. doi: http://doi.org/10.15587/1729-4061.2017.109879
- Yevseiev, S., Korol, O., Kots, H. (2017). Construction of hybrid security systems based on the crypto-code structures and flawed codes. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 4–21. doi: http://doi.org/10.15587/1729-4061.2017.108461
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Serhii Yevseiev, Yevgen Melenti, Oleksandr Voitko, Vitalii Hrebeniuk, Anna Korchenko, Serhii Mykus, Oleksandr Milov, Oleksandr Prokopenko, Оleksandr Sievierinov, Dmytro Chopenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.