Розробка концепції побудови системи безпеки об’єктів критичної інфраструктури

Автор(и)

  • Сергій Петрович Євсеєв Харківський національний економічний університет ім. С. Кузнеця, Україна https://orcid.org/0000-0003-1647-6444
  • Євген Олександрович Меленті Національний юридичний університет імені Ярослава Мудрого, Україна https://orcid.org/0000-0003-2955-2469
  • Олександр Володимирович Войтко Національний університет оборони України ім. І. Черняховського, Україна https://orcid.org/0000-0002-4610-4476
  • Віталій Миколайович Гребенюк Національна академія Служби безпеки України, Україна https://orcid.org/0000-0002-5169-8694
  • Анна Олександрівна Корченко Національний авіаційній університет, Україна https://orcid.org/0000-0003-0016-1966
  • Сергій Анатолійович Микусь Національний університет оборони України ім. І. Черняховського, Україна https://orcid.org/0000-0002-7103-4166
  • Олександр Володимирович Мілов Харківський національний економічний університет ім. С. Кузнеця, Україна https://orcid.org/0000-0001-6135-2120
  • Олександр Сергійович Прокопенко Національний університет оборони України ім. І. Черняховського, Україна https://orcid.org/0000-0002-5482-0317
  • Олександр Васильович Сєвєрінов Харківський національний університет радіоелектроніки, Україна https://orcid.org/0000-0002-6327-6405
  • Дмитро Анатолійович Чопенко Харківський національний університет Повітряних Сил імені Івана Кожедуба, Україна https://orcid.org/0000-0002-1512-5995

DOI:

https://doi.org/10.15587/1729-4061.2021.233533

Ключові слова:

критична інфраструктура, система безпеки, класифікатор загроз, концепція, методологія моделювання

Анотація

Для ефективного захисту об’єктів критичної інфраструктури (ОКІ) важливо розуміти спрямованість зусиль з кібербезпеки. Представлена концепція побудови систем безпеки, що базуються на множині моделей, що описують різні сторони функціонування об’єкта захисту.

Розробка концепції наведена у вигляді послідовності рішення наступних завдань. Визначено основні поняття, пов’язані з кібертерористичними атаками на ОКІ, які дозволяють окреслити межі проблеми і визначити рівень формалізації процесів моделювання. Модель загроз, що запропонована, дозволяє врахувати можливі синергетичні/емерджентні особливості комплексування сучасних цільових загроз і їх гибридність. Сформована уніфікована база загроз, яка не залежить від ОКІ. Розроблено концепцію моделювання системи безпеки ОКІ, що базується на множині моделей різних класів і рівнів. Розроблено методику, яка дозволяє визначити можливості нападника. Розроблено концепцію оцінки рівня захищеності ОКІ, що дозволяє сформувати уніфіковану базу загроз, оцінити ознаки їх синергізму та гібридності, виявити критичні точки в інфраструктурі ОКІ, визначити виконання вимог регуляторів, та стан системи захисту. Математичний апарат та множину моделей, які лежать в основі концепції, можливо використовувати для всіх ОКІ, що дозволяє уніфікувати превентивні заходи та підвищити рівень безпеки.

Запропоновано використання алгоритмів постквантової криптографії на крипто-кодових конструкціях для забезпечення послуг безпеки. Запропоновані механізми забезпечують рівень стійкості (230–235 групових операцій), швидкість криптоперетворень порівнянна з БСШ та вірогідності (Pпом 10-9–10-12).

Біографії авторів

Сергій Петрович Євсеєв, Харківський національний економічний університет ім. С. Кузнеця

Доктор технічних наук, професор

Кафедра кібербезпеки та інформаційних технологій

Євген Олександрович Меленті, Національний юридичний університет імені Ярослава Мудрого

Кандидат технічних наук

Спеціальна кафедра № 2 «Тактико-спеціальна, вогнева та спеціальна фізична підготовка»

Інститут підготовки юридичних кадрів для Служби безпеки України

Олександр Володимирович Войтко, Національний університет оборони України ім. І. Черняховського

Кандидат військових наук, заступник начальника кафедри

Кафедра застосування інформаційних технологій та інформаційної безпеки

Інститут забезпечення військ (сил) та інформаційних технологій

Віталій Миколайович Гребенюк, Національна академія Служби безпеки України

Доктор юридичних наук, старший дослідник, начальник лабораторії

Наукова лабораторія

Анна Олександрівна Корченко, Національний авіаційній університет

Доктор технічних наук, доцент

Кафедра безпеки інформаційних технологій

Сергій Анатолійович Микусь, Національний університет оборони України ім. І. Черняховського

Доктор технічних наук, доцент, начальник кафедри

Кафедра застосування інформаційних технологій та інформаційної безпеки

Інститут забезпечення військ (сил) та інформаційних технологій

Олександр Володимирович Мілов, Харківський національний економічний університет ім. С. Кузнеця

Доктор технічних наук, професор

Кафедра кібербезпеки та інформаційних технологій

Олександр Сергійович Прокопенко, Національний університет оборони України ім. І. Черняховського

Ад’юнкт

Центр воєнно-стратегічних досліджень

Олександр Васильович Сєвєрінов, Харківський національний університет радіоелектроніки

Кандидат технічних наук, доцент

Кафедра безпеки інформаційних технологій

Дмитро Анатолійович Чопенко, Харківський національний університет Повітряних Сил імені Івана Кожедуба

Молодший науковий співробітник

Науковий центр Повітряних Сил

Посилання

  1. (U//FOUO) Leftwing Extremists Likely to Increase Use of Cyber Attacks over the Coming Decade (2016). Washington: Department of Homeland Security. Available at: https://fas.org/irp/eprint/leftwing.pdf
  2. Stouffer, K., Pillitteri, V., Lightman, S., Abrams, M., Hans, A. (2015). Guide to Industrial Control Systems (ICS) Security. National Institute of Standard and Technology. Available at: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
  3. Stoddart, K. (2016). UK cyber security and critical national infrastructure protection. International Affairs, 92 (5), 1079–1105. doi: http://doi.org/10.1111/1468-2346.12706
  4. Konstantas, J. (2016, April 19). Dam Hackers! The Rising Risks to ICS and SCADA Environments. Security Week. Available at: http://www.securityweek.com/dam-hackers-rising-risks-ics-and-scada-environments
  5. Westervelt, R. (2012). Old Application Vulnerabilities, Misconfigurations Continue to Haunt. TechTarget. Available at: https://searchsecurity.techtarget.com/
  6. Ashford, W. (2014). Industrial control systems: What are the security challenges? Computer Weekly. Available at: http://www.computerweekly.com/news/2240232680/Industrial-control-systems-What-are-the-security-challenges
  7. Schneider, J., Obermeier, S., Schlegal, R. (2015). Cyber Security maintenance for SCADA systems. 15 Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security Research, 89–94. doi: http://doi.org/10.14236/ewic/ics2015.10
  8. Russon, M. (2016). How hackers could cripple the UK: Doomsday infrastructure cyber attacks would cost country £442bn. International Business Times. Available at: http://www.ibtimes.co.uk/how-hackers-could-cripple-uk-critical-infrastructure-cyberattacks-would-cost-country-442bn-1554509
  9. Fjäder, C. (2014). The nation-state, national security and resilience in the age of globalisation. Resilience, 2 (2), 114–129. doi: http://doi.org/10.1080/21693293.2014.914771
  10. Holt, T. J., Bossler, A. M., Seigfried-Spellar, K. C. (2015). Cybercrime And Digital Forensics: An Introduction. New York: Routledge, 500. doi: http://doi.org/10.4324/9781315777870
  11. Charlton, C. (2017). Armchair Warriors: Terrifying new generation of ‘cybernative’ ISIS terrorists could target ‘Facebook and West’s energy grids’ in a bid to cause mass panic and mayhem. The Sun. Available at: https://www.thesun.co.uk/news/2643688/cyber-terrorism-attacks-threat-level-isis-facebook-energy/
  12. Denning, D. E. (2000). Cyber terrorism: The Logic Bomb versus the Truck Bomb. Global Dialogue, 2 (4), 29–37.
  13. Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et. al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105)), 6–19. doi: http://doi.org/10.15587/1729-4061.2020.205702
  14. Hryshchuk, R., Yevseiev, S., Shmatko, A. (2018). Construction methodology of information security system of banking information in automated banking systems. Vienna: Premier Publishing s. r. o., 284. doi: http://doi.org/10.29013/r.hryshchuk_s.yevseiev_a.shmatko.cmissbiabs.284.2018
  15. Kondratov, S., Bobro, D., Horbulin, V. et. al.; Sukhodolia, O. (Ed.) (2017). Developing The Critical Infrastructure Protection System in Ukraine. Kyiv: NISS, 184.
  16. Marsh, R. T. (Ed.) (1997). Critical Infrastructures: Protecting America’s Infrastructures. United States Government Printing Office. Report of the President’s Commission on Critical Infrastructure Protection. Washington.
  17. Abele-Wigert, I., Dunn, M., Wenger, A., Mauer, V. (Eds.) (2006). International CIIP Handbook 2006: An Inventory of 20 National and 6 International Critical Information Infrastructure Protection Policies. Center for Security Studies. Vol. I. ETH Zurich. Zurich, 495.
  18. Dunn, M., Mauer, V., Abele-Wigert, I. (Eds.) (2006). Ineternational CIIP Handbook 2006: Analyz- ing Issues, Challenges, and Prospects. Center for Security Studies. Vol. II. ETH Zurich. Zurich, 238.
  19. Assaf, D. (2008). Models of critical information infrastructure protection. International Journal of Critical Infrastructure Protection, 1, 6–14. doi: http://doi.org/10.1016/j.ijcip.2008.08.004
  20. Lagadec, P.(1981). La Civilisation du Risque: Catastrophes Technologiques et Responsabilite´ Sociale. Science Ouverte. Paris: E´ditions du Seuil, 21.
  21. Beck, U. (1986). Risikogesellschaft: Auf dem Weg in eine andere Moderne. Frankfurt: Suhrkamp.
  22. Perrow, C. (1984). Normal Accidents: Living with High-Risk Technologies. New York: Basic Books, 386.
  23. Rinaldi, S. M., Peerenboom, J. P., Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems, 21 (6), 11–25. doi: http://doi.org/10.1109/37.969131
  24. Casalicchio, E., Galli, E., Tucci, S.; Setola, R., Geretshuber, S. (Eds.) (2009). Modeling and Simulation of Complex Interdependent Systems: A Federated Agent-Based Approach. CRITIS 2008. LNCS. Heidelberg: Springer, 5508, 72–83. doi: http://doi.org/10.1007/978-3-642-03552-4_7
  25. Haimes, Y. Y., Jiang, P. (2001). Leontief-Based Model of Risk in Complex Interconnected Infrastructures. Journal of Infrastructure Systems, 7 (1), 1–12. doi: http://doi.org/10.1061/(asce)1076-0342(2001)7:1(1)
  26. Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J. R., Lian, C., Crowther, K. G. (2005). Inoperability Input-Output Model for Interdependent Infrastructure Sectors. I: Theory and Methodology. Journal of Infrastructure Systems, 11 (2), 67–79. doi: http://doi.org/10.1061/(asce)1076-0342(2005)11:2(67)
  27. Santos, J. R., Haimes, Y. Y. (2004). Modeling the Demand Reduction Input‐Output (I‐O) Inoperability Due to Terrorism of Interconnected Infrastructures*. Risk Analysis, 24 (6), 1437–1451. doi: http://doi.org/10.1111/j.0272-4332.2004.00540.x
  28. Haimes, Y. Y., Horowitz, B. M., Lambert, J. H., Santos, J., Crowther, K., Lian, C. (2005). Inoperability Input-Output Model for Interdependent Infrastructure Sectors. II: Case Studies. Journal of Infrastructure Systems, 11 (2), 80–92. doi: http://doi.org/10.1061/(asce)1076-0342(2005)11:2(80)
  29. Setola, R.; Goetz, E., Shenoi, S. (Eds.) (2007). Analysis of Interdependencies Between Italy’s Economic Sectors. Critical Infrastructure Protection: Proceedings of the First Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP. Springer: Hanover, 253, 311–321. doi: http://doi.org/10.1007/978-0-387-75462-8_22
  30. Andrijcic, E., Horowitz, B. (2006). A Macro-Economic Framework for Evaluation of Cyber Security Risks Related to Protection of Intellectual Property. Risk Analysis, 26 (4), 907–923. doi: http://doi.org/10.1111/j.1539-6924.2006.00787.x
  31. Haimes, Y. Y., Chittester, C. G. (2005). A Roadmap for Quantifying the Efficacy of Risk Management of Information Security and Interdependent SCADA Systems. Journal of Homeland Security and Emergency Management, 2 (2). doi: http://doi.org/10.2202/1547-7355.1117
  32. Crowther, K. G. (2008). Decentralized risk management for strategic preparedness of critical infrastructure through decomposition of the inoperability input–output model. International Journal of Critical Infrastructure Protection, 1, 53–67. doi: http://doi.org/10.1016/j.ijcip.2008.08.009
  33. Tanaka, H. (2009). Quantitative Analysis of Information Security Interdependency between Industrial Sectors. Proceedings of the 3rd International Symposium on Empirical Software Engineering and Measurement (ESEM 2009). Lake Buena Vista: IEEE Computer Society Press, 574–583. doi: http://doi.org/10.1109/esem.2009.5314218
  34. Lian, C., Haimes, Y. Y. (2006). Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model. Systems Engineering, 9 (3), 241–258. doi: http://doi.org/10.1002/sys.20051
  35. Barker, K., Santos, J. R. (2010). Measuring the efficacy of inventory with a dynamic input–output model. International Journal of Production Economics, 126 (1), 130–143. doi: http://doi.org/10.1016/j.ijpe.2009.08.011
  36. Santos, J. R. (2008). Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial & Management Optimization, 4 (3), 489–510. doi: http://doi.org/10.3934/jimo.2008.4.489
  37. Jung, J. (2009). Probabilistic Extension to the Inoperability Input-Output Model: P-IIM. Charlottesville: University of Virginia.
  38. Santos, J. R., Haimes, Y. Y., Lian, C. (2007). A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies. Risk Analysis, 27 (5), 1283–1297. doi: http://doi.org/10.1111/j.1539-6924.2007.00957.x
  39. Nieuwenhuijs, A., Luiijf, E., Klaver, M.; Papa, M., Shenoi, S. (Eds.) (2008). Modeling Dependencies In Critical Infrastructures. Critical Infrastructure Protection II: Proceedings of the Second Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP. Heidelberg: Springer, 290, 205–213. doi: http://doi.org/10.1007/978-0-387-88523-0_15
  40. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S. D., Setola, R. (2008). Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4 (1/2), 63–79. doi: http://doi.org/10.1504/ijcis.2008.016092
  41. Panzieri, S., Setola, R. (2008). Failures propagation in critical interdependent infrastructures. International Journal of Modelling, Identification and Control, 3 (1), 69–78. doi: http://doi.org/10.1504/ijmic.2008.018186
  42. Oliva, G., Panzieri, S., Setola, R. (2010). Agent-based input-output interdependency model. International Journal of Critical Infrastructure Protection, 3(2), 76–82. doi: http://doi.org/10.1016/j.ijcip.2010.05.001
  43. Rinaldi, S. M. (2004). Modeling and Simulating Critical Infrastructures and Their Interdependencies. Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004). Big Island: IEEE Computer Society Press, 1–8. doi: http://doi.org/10.1109/hicss.2004.1265180
  44. Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications, 480.
  45. Forrester, J. W. (1961). Principles of Systems. Waltham: Pegasus Communications.
  46. Gonzalez, J. J., Sarriegi, J. M., Gurrutxaga, A.; Lo´pez, J. (Ed.). A Framework for Conceptualizing Social Engineering Attacks. CRITIS 2006. LNCS. Heidelberg: Springer, 4347, 79–90. doi: http://doi.org/10.1007/11962977_7
  47. Sarriegi, J. M., Santos, J., Torres, J. M., Imizcoz, D., Egozcue, E., Liberal, D.: Lopez, J., Hammerli, B. M. (Eds.) (2008). Modeling and Simulating Information Security Management. CRITIS 2007. LNCS. Heidelberg: Springer, 5141, 327–336. doi: http://doi.org/10.1007/978-3-540-89173-4_27
  48. Pasqualini, D., Witkowski, M. S., Klare, P. C., Patelli, P., Cleland, C. A.; Großler, A., Rouwette, E. A. J. A., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2006). A Model for a Water Potable Distribution System and its Impacts resulting from a Water Contamination Scenario. Proceedings of the 24th International Conference of the System Dynamics Society. Nijmegen: Wiley, 99–100.
  49. Bush, B. B., Dauelsberg, L. R., LeClaire, R. J., Powell, D. R., DeLand, S. M., Samsa, M. E. (2005). Critical Infrastructure Protection Decision Support System (CIP/DSS) Project Overview. Tech. Rep. LA-UR-05-1870. Los Alamos: Los Alamos National Laboratory.
  50. LeClaire, R., Bush, B., Dauelsberg, L., Powell, D.; Sterman, J. D., Repenning, N. P., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2005). Critical Infrastructure Protection Decision Support System. Proceedings of the 23rd International Conference of the System Dynamics Society. Boston: System Dynamics Society, 97.
  51. Dauelsberg, L., Outkin, A.; Sterman, J. D., Repenning, N. P., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2005). Modeling Economic Impacts to Critical Infrastructures in a System Dynamics Framework. Proceedings of the 23rd International Conference of the System Dynamics Society. Boston: System Dynamics Society, 63.
  52. LeClaire, R., O’Reilly, G.; Sterman, J. D., Repenning, N. P., Langer, R. S., Rowe, J. I., Yanni, J. M. (Eds.) (2005). Leveraging a High Fidelity Switched Network Model to Inform a System Dynamics Model of the Telecommunications Infrastructure. Proceedings of the 23rd In- ternational Conference of the System Dynamics Society. Boston: System Dynamics Society, 97.
  53. Min, H.-S. J., Beyeler, W., Brown, T., Son, Y. J., Jones, A. T. (2007). Toward modeling and simulation of critical national infrastructure interdependencies. IIE Transactions, 39 (1), 57–71. doi: http://doi.org/10.1080/07408170600940005
  54. United States Department of Commerce, National Institute of Standards and Technology, Computer Systems Laboratory: Integration Definition for Function Modeling (IDEF0) (1993). United States Draft Federal Information Standard, 183.
  55. Berard, C. (2010). Group Model Building Using System Dynamics: An Analysis of Methodological Frameworks. Electronic Journal of Business Research Methods, 8 (1), 35–45.
  56. Hernantes, J., Lauge, A., Labaka, L., Rich, E. H., Sveen, F. O., Sarriegi, J. M. et. al. (2011). Collaborative Modeling of Awareness in Critical Infrastructure Protection. Proceedings of the 44th Hawaii International International Conference on Systems Science (HICSS-44 2011). Koloa: IEEE Press. doi: http://doi.org/10.1109/hicss.2011.113
  57. Bier, V. M., Ferson, S., Haimes, Y. Y., Lambert, J. H., Small, M. J. (2004). Risk of Extreme and Rare Events: Lessons from a Selection of Approaches. Risk Analysis and Society: An Interdisciplinary Characterization of the Field. Cambridge: Cambridge University Press, 74–118. doi: http://doi.org/10.1017/cbo9780511814662.004
  58. Bier, V. M. (2001). Game Theoretic Models for Critical Infrastructure Protection. Risk Analysis in an Interconnected World.
  59. von Neumann, J., Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton: Princeton University Press.
  60. Fudenberg, D., Tirole, J. (1991). Game Theory. Cambridge: MIT Press.
  61. Osborne, M. J., Rubinstein, A. (1994). A Course in Game Theory. Cambridge: MIT Press.
  62. Branzel, R., Dimitrov, D., Tijs, S. (2008). Models in Cooperative Game Theory. Heidelberg: Springer. doi: http://doi.org/10.1007/978-3-540-77954-4
  63. Haywood, O. G. (1954). Military Decision and Game Theory. Journal of the Operations Research Society of America, 2(4), 365–385. doi: http://doi.org/10.1287/opre.2.4.365 ]
  64. Hamilton, T., Mesic, R. (2004). A Simple Game-Theoretic Approach to Suppression of Enemy Defenses and Other Time Critical Target Analyses. Santa Monica. doi: http://doi.org/10.7249/rb108
  65. Brams, S., Kilgour, M. D. (1988). Game Theory and National Security. Oxford: Basil Blackwell, 199.
  66. Burke, D.A. (1999). Towards a Game Theory Model of Information Warfare. Air Force Institute of Technology, Wright-Patterson Air Force Base.
  67. Major, J. A. (2002). Advanced Techniques for Modeling Terrorism Risk. The Journal of Risk Finance, 4 (1), 15–24. doi: http://doi.org/10.1108/eb022950
  68. Sandler, T., Arce, D. G. (2003). Terrorism & Game Theory. Simulation & Gaming, 34 (3), 319–337. doi: http://doi.org/10.1177/1046878103255492
  69. Sandler, T., Siqueira, K. (2008). Games and Terrorism. Simulation & Gaming, 40 (2), 164–192. doi: http://doi.org/10.1177/1046878108314772
  70. Liu, D., Wang, X., Camp, J. (2008). Game-theoretic modeling and analysis of insider threats. International Journal of Critical Infrastructure Protection, 1, 75–80. doi: http://doi.org/10.1016/j.ijcip.2008.08.001
  71. Jenelius, E., Westin, J., Holmgren, Å. J. (2010). Critical infrastructure protection under imperfect attacker perception. International Journal of Critical Infrastructure Protection, 3 (1), 16–26. doi: http://doi.org/10.1016/j.ijcip.2009.10.002
  72. Yoshida, M., Kobayashi, K. (2010). Disclosure Strategies for Critical Infrastructure against Terror Attacks. Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC 2010). Istanbul: IEEE Press, 3194–3199. doi: http://doi.org/10.1109/icsmc.2010.5642277
  73. Lakdawalla, D.N., Zanjani, G. (2004). Insurance, Self-Protection, and the Economics of Terrorism. Tech. Rep. WR-171-ICJ, RAND Corporation. Santa Monica.
  74. Woo, G. (2002). Quantitative Terrorism Risk Assessment. The Journal of Risk Finance, 4 (1), 7–14. doi: http://doi.org/10.1108/eb022949
  75. Bier, V., Oliveros, S., Samuelson, L. (2007). Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker. Journal of Public Economic Theory, 9 (4), 563–587. doi: http://doi.org/10.1111/j.1467-9779.2007.00320.x
  76. Bolloba´s, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics. Vol. 184. Berlin: Springer.
  77. Bolloba´s, B., Kozma, R., Miklo´s, D. (Eds.) (2008). Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies. Vol. 18. Budapest: Ja´nos Bolyai Mathematical Society and Springer. doi: http://doi.org/10.1007/978-3-540-69395-6
  78. Barabási, A.-L., Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286 (5439), 509–512. doi: http://doi.org/10.1126/science.286.5439.509
  79. Albert, R., Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74 (1), 47–97. doi: http://doi.org/10.1103/revmodphys.74.47
  80. Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45 (2), 167–256. doi: http://doi.org/10.1137/s003614450342480
  81. Newman, M., Baraba´si, A. L., Watts, D. J. (Eds.) (2006). The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton: Princeton University Press, 592.
  82. Flaxman, A. D., Frieze, A. M., Vera, J. (2007). Adversarial Deletion in a Scale-Free Random Graph Process. Combinatorics, Probability and Computing, 16 (2), 261–270. doi: http://doi.org/10.1017/s0963548306007681
  83. Albert, R., Jeong, H., Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406 (6794), 378–382. doi: http://doi.org/10.1038/35019019
  84. Cohen, R., Erez, K., ben-Avraham, D., Havlin, S. (2001). Breakdown of the Internet under Intentional Attack. Physical Review Letters, 86 (16), 3682–3685. doi: http://doi.org/10.1103/physrevlett.86.3682
  85. Motter, A. E., Lai, Y.-C. (2002). Cascade-based attacks on complex networks. Physical Review E, 66 (6), 378–382. doi: http://doi.org/10.1103/physreve.66.065102
  86. Wang, X., Guan, S., Heng Lai, C. (2009). Protecting infrastructure networks from cost-based attacks. New Journal of Physics, 11 (3), 033006. doi: http://doi.org/10.1088/1367-2630/11/3/033006
  87. Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27 (1), 55–71. doi: http://doi.org/10.1016/j.socnet.2004.11.008
  88. Barton, D. C., Stamber, K. L. (2000). An Agent-Based Microsimulation of Critical Infrastructure Systems. Tech. Rep. SAND2000-0808C. Sandia National Laboratories. Albuquerque.
  89. North, M.; Sallach, D., Wolsko, T. (Eds.) (2000). Agent-Based Modeling of Complex Infrastructures. Proceedings of the Workshop on Simulation of Social Agents: Architectures and Institutions. ANL/DIS/TM-60. Chicago: University of Chicago and Argonne National Laboratory, 239–250.
  90. Panzieri, S., Setola, R., Ulivi, G. (2004). An Agent Based Simulator for Critical Interdependent Infrastructures. Proceedings of the 2nd International Conference on Critical Infrastructures (CRIS 2004). Grenoble.
  91. Balducelli, C., Bologna, S., Pietro, A. D., Vicoli, G. (2005). Analysing interdependencies of critical infrastructures using agent discrete event simulation. International Journal of Emergency Management, 2 (4), 306–318. doi: http://doi.org/10.1504/ijem.2005.008742
  92. Porcellinis, S. D., Setola, R., Panzieri, S., Ulivi, G. (2008). Simulation of heterogeneous and interdependent critical infrastructures. International Journal of Critical Infrastructures, 4 (1/2), 110–128. doi: http://doi.org/10.1504/ijcis.2008.016095
  93. Dudenhoeffer, D. D., Permann, M. R., Manic, M. (2006). CIMS: A Framework for Infrastructure Interdependency Modeling and Analysis. Proceedings of the 2006 Winter Simulation Conference (WSC 2006). Phoenix: IEEE Press, 478. doi: http://doi.org/10.1109/wsc.2006.323119
  94. Dudenhoeffer, D. D., Permann, M. R., Sussman, E. M. (2002). A Parallel Simulation Framework for Infrastructure Modeling and Analysis. Proceedings of the 34th Winter Simulation Conference (WSC 2002). San Diego: IEEE Press, 1971. doi: http://doi.org/10.1109/wsc.2002.1166498
  95. Zhu, G.-Y., Henson, M. A., Megan, L. (2001). Dynamic modeling and linear model predictive control of gas pipeline networks. Journal of Process Control, 11 (2), 129–148. doi: http://doi.org/10.1016/s0959-1524(00)00044-5
  96. Han, Z. Y., Weng, W. G. (2010). An integrated quantitative risk analysis method for natural gas pipeline network. Journal of Loss Prevention in the Process Industries, 23 (3), 428–436. doi: http://doi.org/10.1016/j.jlp.2010.02.003
  97. Wolthusen, S. D. (2005). GIS-based Command and Control Infrastructure for Critical Infrastructure Protection. Proceedings of the First IEEE International Workshop on Critical Infrastructure Protection (IWCIP 2005), 40–47. doi: http://doi.org/10.1109/iwcip.2005.12
  98. Patterson, S. A., Apostolakis, G. E. (2007). Identification of critical locations across multiple infrastructures for terrorist actions. Reliability Engineering & System Safety, 92 (9), 1183–1203. doi: http://doi.org/10.1016/j.ress.2006.08.004
  99. Yevseiev, S., Korolyov, R., Tkachov, A., Laptiev, O., Opirskyy, I., Soloviova, O. (2020). Modification of the algorithm (OFM) S-box, which provides increasing crypto resistance in the post-quantum period. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 8725–8729. doi:10.30534/ijatcse/2020/261952020
  100. Barabash, O., Laptiev, O., Kovtun, O., Leshchenko, O., Dukhnovska, K., Biehun, A. (2020). The Method dynavic TF-IDF. International Journal of Emerging Trends in Engineering Research, 8 (9), 5712–5718. doi: http://doi.org/10.30534/ijeter/2020/130892020
  101. Barabash, O., Laptiev, O., Tkachev, V., Maystrov, O., Krasikov, O., Polovinkin, I. (2020). The Indirect method of obtaining Estimates of the Parameters of Radio Signals of covert means of obtaining Information. International Journal of Emerging Trends in Engineering Research, 8 (8), 4133–4139. doi: http://doi.org/10.30534/ijeter/2020/17882020
  102. Savchenko, V., Ilin, O., Hnidenko, N., Tkachenko, O., Laptiev, O., Lehominova, S. (2020). Detection of Slow DDoS Attacks based on User’s Behavior Forecasting. International Journal of Emerging Trends in Engineering Research, 8 (5), 2019–2025. doi: http://doi.org/10.30534/ijeter/2020/90852020
  103. Berkman, L., Barabash, O., Tkachenko, O., Musienko, A., Laptiev, O., Salanda, I. (2020). The Intelligent Control System for infocommunication networks. International Journal of Emerging Trends in Engineering Research, 8 (5), 1920–1925. doi: http://doi.org/10.30534/ijeter/2020/73852020
  104. Laptiev, O., Shuklin, G., Hohonianc, S., Zidan, A., Salanda, I. (2019). Dynamic model of Ceber Defence Diagnostics of information Systems with the Use of Fozzy Technologies IEEE ATIT 2019 Conference Proceedings. Kyiv, 116–120. doi: http://doi.org/10.1109/atit49449.2019.9030465
  105. Laptiev, O., Stefurak, O., Polovinkin, I., Barabash, O., Savchenko, V., Zelikovska, O. (2020). The method of improving the signal detection quality by accounting for interference. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 172–176.
  106. Laptiev, O., Savchenko, V., Yevseiev, S., Haidur, H., Gakhov, S., Hohoniants, S. (2020). The new method for detecting signals of means of covert obtaining information. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 176–181.
  107. Sobchuk, V., Pichkur, V., Barabash, O., Laptiev O., Kovalchuk, I., Zidan, A. (2020). Algorithm of control of functionally stable manufacturing processes of enterprises. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 206–211.
  108. Savchenko, V., Laptiev, O., Kolos O., Lisnevskyi R., Ivannikova V., Ablazov, I. (2020). Hidden Transmitter Localization Accuracy Model Based on Multi-Position Range Measurement. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings Kyiv, 246–251.
  109. Yevseiev, S., Ponomarenko, V., Ponomarenko, V., Rayevnyeva, O., Rayevnyeva, O. (2017). Assessment of functional efficiency of a corporate scientific­educational network based on the comprehensive indicators of quality of service. Eastern-European Journal of Enterprise Technologies, 6 (2 (90)), 4–15. doi: http://doi.org/10.15587/1729-4061.2017.118329
  110. Yevseiev, S., Tsyhanenko, O., Ivanchenko, S., Aleksiyev, V., Verheles, D., Volkov, S. et. al. (2018). Practical implementation of the Niederreiter modified crypto­code system on truncated elliptic codes. Eastern-European Journal of Enterprise Technologies, 6 (4 (96)), 24–31. doi: http://doi.org/10.15587/1729-4061.2018.150903
  111. Yevseiev, S., Tsyhanenko, O., Gavrilova, A., Guzhva, V., Milov, O., Moskalenko, V. et. al. (2019). Development of Niederreiter hybrid crypto-code structure on flawed codes. Eastern-European Journal of Enterprise Technologies, 1 (9 (97)), 27–38. doi: http://doi.org/10.15587/1729-4061.2019.156620
  112. Tsyhanenko, O., Yevseiev, S., Milevskyi, S. (2019). Using the Flawed Codes In Niederreiter Crypto-Code Structure. Short Paper Proceedings of the 1st International Conference on Intellectual Systems and Information Technologies (ISIT 2019). Odessa, 17–19.
  113. Yevseiev, S., Kots, H., Minukhin, S., Korol, O., Kholodkova, A. (2017). The development of the method of multifactor authentication based on hybrid crypto­code constructions on defective codes. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 19–35. doi: http://doi.org/10.15587/1729-4061.2017.109879
  114. Yevseiev, S., Korol, O., Kots, H. (2017). Construction of hybrid security systems based on the crypto-code structures and flawed codes. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 4–21. doi: http://doi.org/10.15587/1729-4061.2017.108461

##submission.downloads##

Опубліковано

2021-06-30

Як цитувати

Євсеєв, С. П., Меленті, Є. О., Войтко, О. В., Гребенюк, В. М., Корченко, А. О., Микусь, С. А., Мілов, О. В., Прокопенко, О. С., Сєвєрінов, О. В., & Чопенко, Д. А. (2021). Розробка концепції побудови системи безпеки об’єктів критичної інфраструктури. Eastern-European Journal of Enterprise Technologies, 3(9(111), 63–83. https://doi.org/10.15587/1729-4061.2021.233533

Номер

Розділ

Інформаційно-керуючі системи