Generalizing the sampling theorem for a frequency-time domain to sample signals under the conditions of a priori uncertainty

Authors

DOI:

https://doi.org/10.15587/1729-4061.2021.235844

Keywords:

radio monitoring, a priori uncertainty, sampling theorem, frequency-time domain, signal detection-recovery, Fourier processor

Abstract

The radio monitoring of radiation and interference with electronic means is characterized by the issue related to the structural-parametric a priori uncertainty about the type and parameters of the ensemble of signals by radio-emitting sources. Given this, it is a relevant task to devise a technique for the mathematical notation of signals in order to implement their processing, overcoming their a priori uncertainty in terms of form and parameters.

A given problem has been solved by the method of generalization and proof for the finite signals of the Whittaker-Kotelnikov-Shannon sampling theorem (WKS) in the frequency-time domain. The result of proving it is a new discrete frequency-temporal description of an arbitrary finite signal in the form of expansion into a double series on the orthogonal functions such as sinx/x, or rectangular Woodward strobe functions, with an explicit form of the phase-frequency-temporal modulation function. The properties of the sampling theorem in the frequency-time domain have been substantiated. These properties establish that the basis of the frequency-time representation is orthogonal, the accuracy of approximation by the basic functions sinx/x and rectangular Woodward strobe functions are the same, and correspond to the accuracy of the UCS theorem approximation, while the number of reference points of an arbitrary, limited in the width of the spectrum and duration, signal, now taken by frequency and time, is determined by the signal base.

The devised description of signals in the frequency-time domain has been experimentally investigated using the detection-recovery of continuous, simple pulse, and linear-frequency-modulated (LFM) radio signals. The constructive nature of the resulting description has been confirmed, which is important and useful when devising methods, procedures, and algorithms for processing signals under the conditions of structural-parametric a priori uncertainty.

Author Biography

Mykola Kaliuzhnyi, Kharkiv National University of Radio Electronics

PhD, Professor, Head of Laboratory

Problem Research Laboratory for Radio Monitoring and Processing of Radio Information

References

  1. Gonorovskiy, I. S. (1986). Radiotekhnicheskie tsepi i signaly. Moscow: Radio i svyaz', 512.
  2. Vudvord, F. M. (1955). Teoriya veroyatnostey i teoriya informatsii s primenenie v radiolokatsii. Moscow: Sov. radio, 128.
  3. Whittaker, E. T. (1915). XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory. Proceedings of the Royal Society of Edinburgh, 35, 181–194. doi: https://doi.org/10.1017/s0370164600017806
  4. Whittaker, J. M. (1928). The “Fourier” Theory of the Cardinal Function. Proceedings of the Edinburgh Mathematical Society, 1 (3), 169–176. doi: https://doi.org/10.1017/s0013091500013511
  5. Kotel'nikov, V. A. (2006). On the transmission capacity of 'ether' and wire in electric communications. Uspekhi Fizicheskih Nauk, 176 (7), 762. doi: https://doi.org/10.3367/ufnr.0176.200607h.0762
  6. Shannon, C. E. (1949). Communication in the Presence of Noise. Proceedings of the IRE, 37 (1), 10–21. doi: https://doi.org/10.1109/jrproc.1949.232969
  7. Shennon, K. (1963). Svyaz' pri nalichii shuma. V kn.: Shennon K. Raboty po teorii informatsii i kibernetike. Moscow: IL, 433–460.
  8. Shirmana, Ya. D. (Ed). (1970). Teoreticheskie osnovy radiolokatsii (1970). Moscow: Sov. radio, 560.
  9. Hurgin, Ya. I., Yakovlev, V. P. (2010). Finitnye funktsii v fizike i tekhnike. Moscow: Nauka, 416.
  10. Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93 (26), 429–441. doi: https://doi.org/10.1049/ji-3-2.1946.0074
  11. Brillouin, L. (1956). Science and information theory. Academic Press inc.
  12. Max, J. (1981). Methodes et techniques de traitement du signal et applications aux mesures physiques. Tome 2. Appareillages. Exemples duplications. Methodes nouvelles, 256.
  13. Kalyuzhniy, N. M. (2010). Sledstviya i prilozheniya obobshchennoy teoremy otschetov. Shosta naukova konferentsiya Kharkivskoho universytetu Povitrianykh Syl imeni I. Kozheduba «Novitni tekhnolohiyi dlia zakhystu povitrianoho prostoru». Kharkiv: KhUPS im. I.Kozheduba, 185–186.
  14. Kaliuzhniy, N. M. (2012). Sampling theorem in frequency-time domain and its applications. TCSET '2012: modern problems of radio engineering, telecommunications, and computer science: proceedings of the XIth international conference, TCSET '2012. Lviv-Slavske, 164–166.
  15. Jerri, A. J. (1977). The Shannon sampling theorem—Its various extensions and applications: A tutorial review. Proceedings of the IEEE, 65 (11), 1565–1596. doi: https://doi.org/10.1109/proc.1977.10771
  16. Luke, H. D. (1999). The origins of the sampling theorem. IEEE Communications Magazine, 37 (4), 106–108. doi: https://doi.org/10.1109/35.755459
  17. Unser, M. (2000). Sampling-50 years after Shannon. Proceedings of the IEEE, 88 (4), 569–587. doi: https://doi.org/10.1109/5.843002
  18. Vaidyanathan, P. P. (2001). Generalizations of the sampling theorem: Seven decades after Nyquist. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48 (9), 1094–1109. doi: https://doi.org/10.1109/81.948437
  19. Hudyakov, G. I. (2008). Teorema otschetov teorii signalov i ee sozdateli. Radiotekhnika i elektronika, 53 (9). 1157–1168.
  20. Guochang, W., Yadong, Z., Xiaohui, Y. (2010). Sampling Theory: From Shannon Sampling Theorem to Compressing Sampling. Information Technology Journal, 9 (6), 1231–1235. doi: https://doi.org/10.3923/itj.2010.1231.1235
  21. Kravchenko, V. F., Yurin, A. V. (2013). Novye konstruktsii odnomernoy i dvumernoy obobshchennyh teorem Kravchenko-Kotel'nikova na osnove atomarnoy funktsii up(t). Radiotekhnika i elektronika, 58 (9), 971–976. doi: https://doi.org/10.7868/s003384941309009x
  22. Alekseev, A. V. (2015). 100 let teoremy otschetov: issledovaniya, obobshcheniya i prilozheniya. Morskie intellektual'nye tekhnologii, 2-1 (28), 58–71.
  23. Zhang, Q. (2019). Sampling theorem on shift invariant subspaces in mixed Lebesgue spaces. Journal of Interdisciplinary Mathematics, 22 (2), 121–128. doi: https://doi.org/10.1080/09720502.2019.1578094
  24. Khanyan, G. S. (2013). Sampling theorem for finite duration signal with a non‑obligatory zero index of the frequency band. Izvestiya Yuzhnogo Federal'nogo Universiteta, 20–25.
  25. Porshnev, S. V., Kusaykin, D. V. (2016). O tochnosti vosstanovleniya periodicheskih diskretnyh signalov konechnoy dlitel'nosti s pomoshch'yu ryada Kotel'nikova. T-Comm: Telekommunikatsii i transport, 10 (11), 4–8.
  26. Hodakovskiy, V. A., Degtyarev, V. G. (2017). O teoreme otschetov i ee primenenii dlya sinteza i analiza signalov s ogranichennym spektrom. Izvestiya peterburgskogo universiteta putey soobshcheniya, 14 (3), 562–573. Available at: https://elibrary.ru/item.asp?id=30102783
  27. Lubyshev, B. I., Obukhov, A. G. (2016). Scanning direction-wise Kotelnikov two-dimensional theorem. Vestnik Irkutskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 1 (108), 48–56.
  28. Kaliuzhniy, N. M., Belash, M. V., Pshenichnyh, S. V., Puziy, I. V., Orlenko, V. M. (2005). Experience of time-frequency signal analysis pulse compression as an approach to design of “ANTI-LPI” radar. Applied Radio Electronics, 4 (1), 69–73.
  29. Kalyuzhnyy, N. M., Peretyagin, I. V. (1980). A.s. No. 849966 (SSSR). SHirokopolosnyy panoramniy radiopriemnik.
  30. Kalyuzhnyy, N. M., Peretyagin, I. V., Perunov, Yu. M., Sturov, A. G., TSurskiy, D. A. (1986). A.s. No. 249218 (SSSR). Ustroystvo formirovaniya aktivnyh pritsel'nyh pomekh.

Downloads

Published

2021-06-25

How to Cite

Kaliuzhnyi, M. (2021). Generalizing the sampling theorem for a frequency-time domain to sample signals under the conditions of a priori uncertainty. Eastern-European Journal of Enterprise Technologies, 3(9(111), 6–15. https://doi.org/10.15587/1729-4061.2021.235844

Issue

Section

Information and controlling system