Algorithm of minimizing the metodical error of assessing the signal frequency by the maximum spectrum
DOI:
https://doi.org/10.15587/1729-4061.2014.24725Keywords:
space-time signal, diagnostics, reliability, weighting function, spectrum, complex systemsAbstract
The problem of selecting the weighting function and scale factor taking into account the features of the discrete signal spectrum is considered. The dependences of maximum values of methodological errors on the normalized frequency when using the Kaiser-Bessel and Dolph-Chebyshev weighting function are described. The adaptive sample optimization algorithm is given. Validating the obtained theoretical results is performed by numerical simulation, which confirmed that using the Dolph-Chebyshev weighting function provides smaller error due to the smaller width of the main lobe of the spectral density for the same maximum levels of side lobes of the Kaiser-Bessel and Dolph-Chebyshev weighting function when measuring signal frequency, containing about one oscillation period. However, with the rise in frequency, monotonous decrease in the sidelobe level of the spectral density of the Kaiser-Bessel weighting function leads to lower estimation error. As a result, with the growth of the estimated signal frequency, the Kaiser-Bessel weighting function has a significant advantage over the Dolph-Chebyshev weighting function. It is shown that, at increasing the number of samples, divergence monotonously decreases. Calculations of dependences with different sampling periods show that increasing the number of samples reduces the shift of theoretical and practical values with zero error and lowers the measurement error during simulation. The reduction rate of the error value with an increase in the relative signal sample length, obtained during the simulation is less than the reduction rate of the error, obtained from theoretical calculations. This is caused by two reasons: DFT use, and expansion of the main spectral component and the inevitable increase in noise exposure including through the signal quantization.
References
- Давыдочкин, В. М. Синтез весовых функций для спектрального анализа сигналов [Текст] : матер. междун. науч. конф./ В. М. Давыдочкин, С. В. Давыдочкина // Информационные технологии в современном мире. Ч. 3. – Таганрог, 2010. – С. 29–33.
- Хэррис, Ф. Дж. Использование окон при гармоническом анализе методом дискретного преобразования Фурье [Текст] / Ф. Дж. Хэррис // ТИИЭР. – 1978. – Т. 66, № 1. – С. 60–96.
- Дворкович, A. B. Ещё об одном методе расчёта эффективных оконных функций, используемых при гармоническом анализе с помощью ДПФ [Текст] / А. В. Дворкович // Цифровая обработка сигналов. – 2011. – № 3. – С. 13-18.
- Марпл-мл., С. Л. Цифровой спектральный анализ и его приложения: Пер. с англ. [Текст] / С. Л. Марпл-мл. – М.: Мир, 1990. – 584 с.
- Рабинер, Л. Теория и применение цифровой обработки сигналов [Текст] / Л. Рабинер, Б. Гоулд. – М.: Мир, 1978. – 523 с.
- Хемминг, Р. В. Цифровые фильтры [Текст] / Р. В. Хемминг; пер. с англ.; под ред. А. Хойнен // ТИИЭР. – 1965. – Т. 53, № 8. – С. 1074–1076.
- Chengge, Z. A method for target estimation of level radar [Text] : inter. Conf. / Z. Chengge, Y. Yeshu, Z. Xinchao, W. Xin // Radar proceedings. ICR’96. Beijing. China, 2012. – P. 270–273.
- Кожевников, Н. И. Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа [Текст] / Н. И. Кожевников, Т. И. Краснощекова, Н. Е. Шишкин. – М.: Наука, 1964. – 323 с.
- Давыдочкин, В. М. Минимизация погрешности измерения расстояния при цифровой обработке сигналов в ближней частотной радиолокации [Текст] / В. М. Давыдочкин, В. В. Езерский // Цифровая обработка сигналов. – 2009.– № 3. – С. 22–27.
- Дженкинс, Г. Спектральный анализ и его приложения. Выпуск 1 [Текст] / Г. Дженкинс, Д. Ватте. – М.: Мир, 1972. – 316 с.
- Шахтарин, Б. И. Методы спектрального оценивания случайных процессов [Текст] / Б. И. Шахтарин, В. А. Ковригин. – М.: Гелиос АРВ, 2009. – 248 с.
- Davydochkin, V. M., Davydochkina, N. E. (2010). Synthesis of the weighting functions for spectral analysis of signals. Information technologies in the modern world. Part 3. Taganrog, 29–33.
- Harris, F. J. (1978). Using windows for harmonic analysis by the discrete Fourier transform, 66 (1), 60–96.
- Dvorkovich, A. B. (2011). Yet another method for calculating the effective window functions used in harmonic analysis using DFT. Digital signal processing formation, 23 (3), 13–18 .
- Marple ml, S. L. (1990). Digital Spectral Analysis and its Application: Trans. from English, 584.
- Rabiner, L., Gould, B. (1978). Theory and application of digital signal processing. New York, Wiley, 523.
- Hemming, R. V. (1965). Digital filters : Per. with Engl. / ed. A. Hoynen . Measurement of the scattering matrix objectives, 53 (8), 1074–1076.
- Chengge, Z., Yeshu, Y., Xinchao, Z., Xin, W. (2012). A method for target estimation of level radar. International conference of radar proceedings. ICR’96. Beijing. China, 270–273.
- Kozhevnikov, N. I., Krasnoshchekova, T. I. (1964). Shishkin NE series and Fourier integrals. Field theory. Analytical and special functions. Conversion Laplasa. M.: Nauka, 323.
- Davydochkin, V. M., Yezerski,y V. V. (2009). Minimize measurement errors racesstanding at digital signal processing in the near- frequency radartion, Digital Signal Processing, 22 (3), 22–27.
- Jenkins, G., Watts, D. (1972). Spectral analysis and its applications . Issue 1. M.: World, 316.
- Shakhtarin, B. I. , Kovrigin, V. A. (2009). Methods of spectral estimation of random processes. Helios ARV, 248.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Надія Борисівна Марченко, Віталій Володимирович Нечипорук, Олена Петрівна Нечипорук
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.