Algorithm of minimizing the metodical error of assessing the signal frequency by the maximum spectrum

Authors

  • Надія Борисівна Марченко National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03058, Ukraine
  • Віталій Володимирович Нечипорук National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03068, Ukraine
  • Олена Петрівна Нечипорук National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03068, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.24725

Keywords:

space-time signal, diagnostics, reliability, weighting function, spectrum, complex systems

Abstract

The problem of selecting the weighting function and scale factor taking into account the features of the discrete signal spectrum is considered. The dependences of maximum values of methodological errors on the normalized frequency when using the Kaiser-Bessel and Dolph-Chebyshev weighting function are described. The adaptive sample optimization algorithm is given. Validating the obtained theoretical results is performed by numerical simulation, which confirmed that using the Dolph-Chebyshev weighting function provides smaller error due to the smaller width of the main lobe of the spectral density for the same maximum levels of side lobes of the Kaiser-Bessel and Dolph-Chebyshev weighting function when measuring signal frequency, containing about one oscillation period. However, with the rise in frequency, monotonous decrease in the sidelobe level of the spectral density of the Kaiser-Bessel weighting function leads to lower estimation error. As a result, with the growth of the estimated signal frequency, the Kaiser-Bessel weighting function has a significant advantage over the Dolph-Chebyshev weighting function. It is shown that, at increasing the number of samples, divergence monotonously decreases. Calculations of dependences with different sampling periods show that increasing the number of samples reduces the shift of theoretical and practical values with zero error and lowers the measurement error during simulation. The reduction rate of the error value with an increase in the relative signal sample length, obtained during the simulation is less than the reduction rate of the error, obtained from theoretical calculations. This is caused by two reasons: DFT use, and expansion of the main spectral component and the inevitable increase in noise exposure including through the signal quantization.

Author Biographies

Надія Борисівна Марченко, National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03058

Ph.D., Associate Professor

Department of Information Measuring Systems

Віталій Володимирович Нечипорук, National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03068

Ph.D., Associate Professor

Department of Information Measuring Systems

Олена Петрівна Нечипорук, National Aviation University Komarova Ave, 1, Kiev, Ukraine, 03068

Ph.D., Associate Professor

Department of computerized control systems

References

  1. Давыдочкин, В. М. Синтез весовых функций для спектрального анализа сигналов [Текст] : матер. междун. науч. конф./ В. М. Давыдочкин, С. В. Давыдочкина // Информационные технологии в современном мире. Ч. 3. – Таганрог, 2010. – С. 29–33.
  2. Хэррис, Ф. Дж. Использование окон при гармоническом анализе методом дискретного преобразования Фурье [Текст] / Ф. Дж. Хэррис // ТИИЭР. – 1978. – Т. 66, № 1. – С. 60–96.
  3. Дворкович, A. B. Ещё об одном методе расчёта эффективных оконных функций, используемых при гармоническом анализе с помощью ДПФ [Текст] / А. В. Дворкович // Цифровая обработка сигналов. – 2011. – № 3. – С. 13-18.
  4. Марпл-мл., С. Л. Цифровой спектральный анализ и его приложения: Пер. с англ. [Текст] / С. Л. Марпл-мл. – М.: Мир, 1990. – 584 с.
  5. Рабинер, Л. Теория и применение цифровой обработки сигналов [Текст] / Л. Рабинер, Б. Гоулд. – М.: Мир, 1978. – 523 с.
  6. Хемминг, Р. В. Цифровые фильтры [Текст] / Р. В. Хемминг; пер. с англ.; под ред. А. Хойнен // ТИИЭР. – 1965. – Т. 53, № 8. – С. 1074–1076.
  7. Chengge, Z. A method for target estimation of level radar [Text] : inter. Conf. / Z. Chengge, Y. Yeshu, Z. Xinchao, W. Xin // Radar proceedings. ICR’96. Beijing. China, 2012. – P. 270–273.
  8. Кожевников, Н. И. Ряды и интегралы Фурье. Теория поля. Аналитические и специальные функции. Преобразования Лапласа [Текст] / Н. И. Кожевников, Т. И. Краснощекова, Н. Е. Шишкин. – М.: Наука, 1964. – 323 с.
  9. Давыдочкин, В. М. Минимизация погрешности измерения расстояния при цифровой обработке сигналов в ближней частотной радиолокации [Текст] / В. М. Давыдочкин, В. В. Езерский // Цифровая обработка сигналов. – 2009.– № 3. – С. 22–27.
  10. Дженкинс, Г. Спектральный анализ и его приложения. Выпуск 1 [Текст] / Г. Дженкинс, Д. Ватте. – М.: Мир, 1972. – 316 с.
  11. Шахтарин, Б. И. Методы спектрального оценивания случайных процессов [Текст] / Б. И. Шахтарин, В. А. Ковригин. – М.: Гелиос АРВ, 2009. – 248 с.
  12. Davydochkin, V. M., Davydochkina, N. E. (2010). Synthesis of the weighting functions for spectral analysis of signals. Information technologies in the modern world. Part 3. Taganrog, 29–33.
  13. Harris, F. J. (1978). Using windows for harmonic analysis by the discrete Fourier transform, 66 (1), 60–96.
  14. Dvorkovich, A. B. (2011). Yet another method for calculating the effective window functions used in harmonic analysis using DFT. Digital signal processing formation, 23 (3), 13–18 .
  15. Marple ml, S. L. (1990). Digital Spectral Analysis and its Application: Trans. from English, 584.
  16. Rabiner, L., Gould, B. (1978). Theory and application of digital signal processing. New York, Wiley, 523.
  17. Hemming, R. V. (1965). Digital filters : Per. with Engl. / ed. A. Hoynen . Measurement of the scattering matrix objectives, 53 (8), 1074–1076.
  18. Chengge, Z., Yeshu, Y., Xinchao, Z., Xin, W. (2012). A method for target estimation of level radar. International conference of radar proceedings. ICR’96. Beijing. China, 270–273.
  19. Kozhevnikov, N. I., Krasnoshchekova, T. I. (1964). Shishkin NE series and Fourier integrals. Field theory. Analytical and special functions. Conversion Laplasa. M.: Nauka, 323.
  20. Davydochkin, V. M., Yezerski,y V. V. (2009). Minimize measurement errors racesstanding at digital signal processing in the near- frequency radartion, Digital Signal Processing, 22 (3), 22–27.
  21. Jenkins, G., Watts, D. (1972). Spectral analysis and its applications . Issue 1. M.: World, 316.
  22. Shakhtarin, B. I. , Kovrigin, V. A. (2009). Methods of spectral estimation of random processes. Helios ARV, 248.

Published

2014-06-26

How to Cite

Марченко, Н. Б., Нечипорук, В. В., & Нечипорук, О. П. (2014). Algorithm of minimizing the metodical error of assessing the signal frequency by the maximum spectrum. Eastern-European Journal of Enterprise Technologies, 3(9(69), 57–60. https://doi.org/10.15587/1729-4061.2014.24725

Issue

Section

Information and controlling system