Solution of contact problems of elasticity theory using a discrete finite-size element

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.24984

Keywords:

discrete model, continuous medium, discrete finite-size element, method of successive displacements

Abstract

The paper deals with studying the possibility of solving contact problems of the elasticity theory, in particular the punch problem using a discrete model of a continuous medium. Mixed boundary value problem of statics of elastic body is solved. Namely, the elastic equilibrium of the body is found if the displacements of some part of its surface points are given. Physically, this corresponds to the case when, using the forces, applied to the surface points, the given displacements are imparted to these points, and the surface is fixed in this form. The difference of the solved contact problems of the elasticity theory is that forces are given for some surface points, and displacements - for others. This work is based on the idea of modeling a continuous medium using the finite-size element. The rectangle, in the corners of which there are point masses, connected by elastic links was proposed as a structural element of the discrete model, replacing the rectangular element of continuous elastic medium. To make calculations for this model it is proposed to use the method of successive displacements, which gave a good account of itself in calculating beam structures. The obtained discrete models allow effectively solve contact problems of the elasticity theory, including at any values of the Poisson’s ratio.

Author Biographies

Александр Дмитриевич Шамровский, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006

Doctor of Technical Sciences, Professor

Department of Automated Systems Software

Елизавета Николаевна Богданова, Zaporizhzhya State Engineering Academy Lenin Av. 226, Zaporizhzhya, Ukraine, 69006

Postgraduate student

Department of Software of automated systems

References

  1. Гребенюк, С. Н., Моделирование контактного взаимодействия эластомерных элементов конструкций [Текст] / С. Н. Гребенюк, Е. С. Решевская, В. М. Тархова // Вестник Херсонского национального технического университета. – 2011. – Вип. 3 (42). – С. 163–167.
  2. Дырда, В. И. Определение напряженно-деформированного состояния резинометаллических сейсмоопор [Текст] / В. И. Дырда, Н. И. Лисица, А. В. Новикова и др. // Методи розв’язування прикладних задач механіки деформівного твердого тіла. – 2012. – Вип. 13. – С. 152–158.
  3. Бова, А. А. Напружено-деформований стан гумових конструкцій на основі моментної схеми скінченного елемента [Текст] : зб. тез доповідей IV Всеукр. , XI регіональної наук. конф. / А. А. Бова // Актуальні проблеми математики та інформатики. – Запоріжжя: ЗНУ, 2013. – С. 42–43.
  4. Попович, О. Г. Аналіз зміцнення поверхневого шару із застосуванням розв’язку контактної задачі [Текст] / О. Г. Попович, В. Г. Шевченко // Проблеми обчислювальної механіки і міцності конструкцій / Дніпропетровський національний університет – Дніпропетровськ: Ліра. – 2011. Вип. 16. – С. 232–239.
  5. Шамровский, А. Д. Дискретные модели для плоских статических задач теории упругости [Текст] / А. Д. Шамровский, Ю. А. Лымаренко, Д. Н. Колесник, Т. А. Миняйло, В. В. Кривуляк // Восточно-Европейский журнал передовых технологий. – 2011. – Т. 3, № 7 (51). – С. 11–18.
  6. Богданова, Є. М. Розв’язання контактних задач теорії пружності за допомогою дискретних моделей [Текст] / Є. М. Богданова, О. Д. Шамровський // Нові матеріали і технології в металургії та машинобудуванні. – 2013. – № 1. – С. 100–105.
  7. Игумнов, Л. А. Гранично-элементное решение краевых задач трехмерной анизотропной теории упругости [Текст] / Л. А. Игумнов, И. П. Марков, В. П. Пазин // Вестник Нижегородского университета им. Н. И. Лобачевского. –
  8. – Вып. 1 (3). – С. 115–119.
  9. Igumnov, L. A. Using the Boundary-Element Method for Analyzing 3-D Problems of Equilibrium of Anisotropic Elasticity with Conjugated Fields [Text] / L. A. Igumnov, I. P. Markov, A. A. Ipatov, S. Yu. Litvinchuk // 2014 International Symposium on Physics and Mechanics of New Materials and Underwater Applications (PHENMA 2014): Abstracts & schedule. Khon Kaen, Thailand, 2014. – P. 38–39
  10. Миняйло, Т. А. Усовершенствованный метод последовательных перемещений для расчета пространственных стержневых конструкций [Текст] / Т. А. Миняйло, Д. Н. Колесник, О. Д. Шамровський // Нові матеріали і технології в металургії та машинобудуванні. – 2013. – № 1. – С. 100–105.
  11. Колесник, Д. Н. Роль нелинейных эффектов при решении одной плоской задачи теории упругости [Текст] / Д. Н. Колесник, А. Д. Шамровский // Восточно-Европейский Журнал передовых технологий. – 2011. – Т. 5, №7 (53). – С. 59–62.
  12. Grebenyuk, S., Reshevskaya, E., Tarkhova, V. (2011). Modelirovanie kontaktnogo vzaimodeystviya elastomernykh elementov konstruktsiy [Modeling of contact interaction of elastomeric elements of construction]. Vestnik Khersonskogo natsional'nogo tekhnicheskogo universiteta, 3 (42), 163–167. [in Russian]
  13. Dyrda, V., Lisitsa, N., Novikova, A. (2012). Opredelenie napryazhenno-deformirovannogo sostoyaniya rezinometallicheskikh seysmoopor [Determination of the stress-strain state of the rubber seismic reliance]. Metodi rozv’yazuvannya prikladnikh zadach mekhanіki deformіvnogo tverdogo tіla, 13, 152–158. [in Russian]
  14. Bova, A. (2013) Napruzheno-deformovaniy stan gumovikh konstruktsіy na osnovі momentnoї skhemi skіnchennogo elementa [The stress-strain state of the rubber constructions on the basis of the moment schemes of a finite element]. Aktual'nі problemi matematiki ta іnformatiki: zb. tez dopovіdey IV Vseukr. , XI regіonal'noї nauk. konf. molodikh doslіdnikіv, Zaporizhzhya, ZNU, 42–43. [in Ukrainian]
  15. Popovich, O, Shevchenko, V. (2011) Analіz zmіcnennja poverhnevogo sharu іz zastosuvannjam rozv’jazku kontaktnoї zadachі [Analysis of strengthening the surface layer using the contact problem solution] Dnіpropetrovs'kij nacіonal'nij unіversitet, Dnіpropetrovs'k, Lіra, 16, 232–239. [in Ukrainian]
  16. Shamrovskiy, A., Lymarenko, Y., Kolesnik, D., Minyaylo T., Krivulyak, V. (2011). Diskretnye modeli dlya ploskikh staticheskikh zadach teorii uprugosti [Discrete models for planar static problems of theory of elasticity]. Eastern-European Journal of enterprise technologies, 3/7 (51), 11–18. [in Russian]
  17. Bogdanova, E., Shamrovs'kiy, A. (2013). Rozv’yazannya kontaktnikh zadach teorії pruzhnostі za dopomogoyu diskretnikh modeley [The solution of contact problems of theory of elasticity using discrete models]. Novі materіali і tekhnologіi v metalurgіi ta mashinobuduvannі, 1, 100–105. [in Russian]
  18. Igumnov, L., Markov, I., Pazin, V. (2013) Granichno-elementnoe reshenie kraevykh zadach trekhmernoy anizotropnoy teorii uprugosti [Boundary-element solution of boundary problems of three-dimensional anisotropic elasticity theory]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 1 (3), 115–119. [in Russian]
  19. Igumnov, L., Markov, I., Ipatov, A., Litvinchuk, S. (2014). Using the Boundary-Element Method for Analyzing 3-D Problems of Equilibrium of Anisotropic Elasticity with Conjugated Fields. International Symposium on Physics and Mechanics of New Materials and Underwater Applications (PHENMA 2014): Abstracts & schedule. Khon Kaen, Thailand, 38–39
  20. Minyaylo, T., Kolesnik, D., Shamrovskiy, A. (2013). Usovershenstvovannyy metod posledovatel'nykh peremeshcheniy dlya rascheta prostranstvennykh sterzhnevykh konstruktsiy [An improved method of successive displacements for calculating of spatial beam structures]. Novі materіali і tekhnologіi v metalurgіi ta mashinobuduvannі, 1, 100–105. [in Russian]
  21. Kolesnik, D., Shamrovskiy, A. (2011). Rol' nelineynykh effektov pri reshenii odnoy ploskoy zadachi teorii uprugosti [Role of nonlinear effects in solving a plane problem of elasticity theory] Eastern-European Journal of Enterprise Technologies, Vol. 5, № 7 (53), 59–62. [in Russian]

Published

2014-06-20

How to Cite

Шамровский, А. Д., & Богданова, Е. Н. (2014). Solution of contact problems of elasticity theory using a discrete finite-size element. Eastern-European Journal of Enterprise Technologies, 3(7(69), 41–45. https://doi.org/10.15587/1729-4061.2014.24984

Issue

Section

Applied mechanics