Modifying the method for forecasting hazardous processes with unknown dynamics in the presence of noise

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.252076

Keywords:

modified forecasting method, unknown dynamics, masking noise, Brown’s model, forecasting errors

Abstract

This paper has substantiated a modified method that, within the framework of the adaptive zero-order Brown’s model, provides for increased accuracy in predicting processes with unknown dynamics masked by the noise of various levels. The forecasting method modification essentially involves an adaptive technique for determining the weight of the correction of the previous forecast, taking into consideration the recurrent state of the predicted process in time. To investigate the accuracy of the forecasting method, a test model of the process dynamics was determined in the form of a rectangular pulse with unit amplitude. In addition, a model of additive masking noise was defined in the form of a discrete Gaussian process with a zero mean and a variable value of the mean square deviation. Based on determining the exponentially smoothed values of current absolute forecasting errors, the dynamics of forecast accuracy were examined for the modified and self-adjusting methods. It was found that for the mean quadratic deviation of the masking noise equal to 0.9, the smoothed absolute prediction error for the modified method does not exceed 23 %; for the self-adjusting method – 42 %. This means that the prediction accuracy for the modified method is about twice as high. In the case of an average square deviation of masking noise of 0.1, the smoothed absolute prediction error for the modified and self-adjusting methods is approximately the same and does not exceed 10 %. That means that at a low level of masking noise, both prediction methods provide approximately the same accuracy. However, with an increase in the level of masking noise, the self-adjusting method significantly loses the accuracy of the forecast to the proposed modified method.

Author Biographies

Boris Pospelov, Scientific-Methodical Center of Educational Institutions in the Sphere of Civil Defence

Doctor of Technical Sciences, Professor

Vladimir Andronov, National University of Civil Defence of Ukraine

Doctor of Technical Sciences, Professor

Research Center

Olekcii Krainiukov, V. N. Karazin Kharkiv National University

Doctor of Geographical Sciences, Professor

Department of Environmental Safety and Environmental Education

Kostiantyn Karpets, National University of Civil Defence of Ukraine

PhD, Associate Professor

Research Center

Yuliia Bezuhla, National University of Civil Defence of Ukraine

PhD, Associate Professor

Department of Prevention Activities and Monitoring

Kostiantyn Fisun, National Academy of the National Guard of Ukraine

Doctor of Economic Sciences, Professor

Department of Management and the Military Economy

Svyatoslav Manzhura, National Academy of the National Guard of Ukraine

PhD

Research Center

Svitlana Hryshko, Bogdan Khmelnitsky Melitopol State Pedagogical University

PhD, Associate Professor

Department of Physical Geography and Geology

Olga Mukhina, H. S. Skovoroda Kharkiv National Pedagogical University

PhD, Associate Professor

Research Center

Valentyna Ivanova, Bogdan Khmelnitsky Melitopol State Pedagogical University

Department of Physical Geography and Geology

References

  1. Vambol, S., Vambol, V., Bogdanov, I., Suchikova, Y., Rashkevich, N. (2017). Research of the influence of decomposition of wastes of polymers with nano inclusions on the atmosphere. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 57–64. doi: https://doi.org/10.15587/1729-4061.2017.118213
  2. Tan, P., Steinbach, M., Kumar, V. (2005). Introduction to Data Mining. Addison Wesley, 864.
  3. Semko, A. N., Beskrovnaya, M. V., Vinogradov, S. A., Hritsina, I. N., Yagudina, N. I. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664. Available at: http://jtam.pl/The-usage-of-high-speed-impulse-liquid-jets-for-putting-out-gas-blowouts-,102145,0,2.html
  4. Andronov, V., Pospelov, B., Rybka, E. (2017). Development of a method to improve the performance speed of maximal fire detectors. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 32–37. doi: https://doi.org/10.15587/1729-4061.2017.96694
  5. Migalenko, K., Nuianzin, V., Zemlianskyi, A., Dominik, A., Pozdieiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
  6. Vambol, S., Vambol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4), 186–195. doi: https://doi.org/10.6001/energetika.v64i4.3893
  7. Dubinin, D., Korytchenko, K., Lisnyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finely­dispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: https://doi.org/10.15587/1729-4061.2018.127865
  8. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conferences, 60, 00003. doi: https://doi.org/10.1051/e3sconf/20186000003
  9. Otrosh, Y., Semkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065
  10. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. Available at: http://29yjmo6.257.cz/bitstream/123456789/9380/1/Poll%20Res-10_proof.pdf
  11. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
  12. Sadkovyi, V., Andronov, V., Semkiv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkovyi, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 180. doi: https://doi.org/10.15587/978-617-7319-43-5
  13. Lebedinskiy, A. A., Dozortsev, V. M., Kneller, D. V. (2004). Usovershenstvovannye ASUTP na osnove Profit®Controller razrabotki korporatsii Honeywell. Avtomatizatsiya v promyshlennosti, 6, 39–41. Available at: https://www.researchgate.net/publication/282705449_Usoversenstvovannye_ASUTP_na_osnove_ProfitRController_razrabotki_korporacii_Honeywell
  14. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Maksymenko, N., Meleshchenko, R. et. al. (2020). Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise Technologies, 4 (10 (106)), 37–44. doi: https://doi.org/10.15587/1729-4061.2020.210059
  15. Doyle, J. (1996). Robust and Optimal Control. Proceedings of 35th IEEE Conference on Decision and Control, 1595–1598. doi: https://doi.org/10.1109/cdc.1996.572756
  16. Makshanov, A. V., Musaev, A. A. (2019). Intellektual'niy analiz dannyh. Sankr-Peterburg: SPbGTI(TU), 188.
  17. Yusupov, R. M., Musaev, A. A. (2017). Efficiency of information systems and technologies: features of estimation. SPIIRAS Proceedings, 2 (51), 5–34. Available at: http://proceedings.spiiras.nw.ru/index.php/sp/article/view/3477/2027
  18. Pospelov, B., Rybka, E., Krainiukov, O., Yashchenko, O., Bezuhla, Y., Bielai, S. et. al. (2021). Short-term forecast of fire in the premises based on modification of the Brown’s zero-order model. Eastern-European Journal of Enterprise Technologies, 4 (10 (112)), 52–58. doi: https://doi.org/10.15587/1729-4061.2021.238555
  19. Lukashin, Yu. P. (2003). Adaptivnye metody kratkosrochnogo prognozirovaniya vremennyh ryadov. Moscow: Finansy i statistika, 416.
  20. Brown, R. G. (2004). Smoothing, forecasting and prediction of discrete time series. Courier Corporation, 468.
  21. Svetun'kov, S. G., Butuhanov, A. V., Svetun'kov, I. S. (2006). Zapredel'nye sluchai metoda Brauna v ekonomicheskom prognozirovanii. Sankt-Peterburg: SPbGUEF, 71.
  22. Gambarov, G. M., Zhuravel', N. M., Korolev, Yu. G. (1990). Statisticheskoe modelirovanie i prognozirovanie. Moscow: Finansy i statistika, 383.
  23. Lugachev, M. I., Lyapuntsov, Yu. P. (1999). Metody sotsial'no-ekonomicheskogo prognozirovaniya. Moscow: TIIS, 160.
  24. Svetun'kov, S. G. (2002). O rasshirenii granits primeneniya metoda Brauna. Izvestiya Sankt-Peterburgskogo gosudarstvennogo universiteta ekonomiki i finansov, 3, 94–107.
  25. Hyndman, R. J., Khandakar, Y. (2008). Automatic time series forecasting: the forecast Package for R. Journal of statistical software, 27 (3), 1–22. doi: https://doi.org/10.18637/jss.v027.i03
  26. Vartanyan, V. M., Romanenkov, Yu. A., Kononenko, A. V. (2005). Parametricheskiy sintez prognoznoy modeli eksponentsial'nogo sglazhivaniya. Vestnik NTU «KhPI», 59, 9–16. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/28135/1/vestnik_KhPI_2005_59_Vartanyan_Parametricheskiy.pdf
  27. Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Karpets, K., Pirohov, O. et. al. (2019). Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise Technologies, 6 (4 (102)), 39–46. doi: https://doi.org/10.15587/1729-4061.2019.187252
  28. Tebueva, F. B., Streblyanskaya, N. V. (2016). Adaptivniy metod prognozirovaniya dlya korotkih vremennyh ryadov prirodnyh protsessov. Sovremennaya nauka: aktual'nye problemy teorii i praktiki, 6 (20), 83–87.
  29. Svetun'kov, I. S. (2010). Samoobuchayuschayasya model' kratkosrochnogo prognozirovaniya sotsial'no-ekonomicheskoy dinamiki. Modeli otsenki, analiza i prognozirovaniya sotsial'no-ekonomicheskih sistem. Kharkiv: INZhEK, 11–32. Available at: https://publications.hse.ru/pubs/share/folder/q1zrwhrj6z/84096936.pdf
  30. Webber, C. L., Ioana, C., Marwan, N. (Eds.) (2016). Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics. doi: https://doi.org/10.1007/978-3-319-29922-8
  31. Sadkovyi, V., Pospelov, B., Andronov, V., Rybka, E., Krainiukov, O., Rud, A. et. al. (2020). Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 14–22. doi: https://doi.org/10.15587/1729-4061.2020.218714
  32. Pospelov, B., Rybka, E., Togobytska, V., Meleshchenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579
  33. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: https://doi.org/10.1002/9781118032428
  34. Singh, P. (2016). Time-frequency analysis via the fourier representation. HAL. 2016. Available at: https://hal.archives-ouvertes.fr/hal-01303330/document
  35. Stankovic, L., Dakovic, M., Thayaparan, T. (2014). Time-frequency signal analysis with Applications. Kindle edition, 655.
  36. Giv, H. H. (2013). Directional short-time Fourier transform. Journal of Mathematical Analysis and Applications, 399 (1), 100–107. doi: https://doi.org/10.1016/j.jmaa.2012.09.053
  37. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequency­temporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.125926
  38. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainiukov, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
  39. Sinaga, H., Irawati, N. (2020). A Medical Disposable Supply Demand Forecasting By Moving Average And Exponential Smoothing Method. Proceedings of the Proceedings of the 2nd Workshop on Multidisciplinary and Applications (WMA) 2018, 24-25 January 2018, Padang, Indonesia. doi: https://doi.org/10.4108/eai.24-1-2018.2292378
  40. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Biryukov, I., Butenko, T. et. al. (2021). Short-term fire forecast based on air state gain recurrence and zero-order brown model. Eastern-European Journal of Enterprise Technologies, 3 (10 (111)), 27–33. doi: https://doi.org/10.15587/1729-4061.2021.233606
  41. Pospelov, B., Rybka, E., Meleshchenko, R., Borodych, P., Gornostal, S. (2019). Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 29–35. doi: https://doi.org/10.15587/1729-4061.2019.155027
  42. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et. al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2 (10 (104)), 6–12. doi: https://doi.org/10.15587/1729-4061.2020.200140
  43. Pospelov, B., Rybka, E., Samoilov, M., Krainiukov, O., Kulbachko, Y., Bezuhla, Y. et. al. (2021). Investigating errors when forecasting processes with uncertain dynamics and observation noise by the self-adjusting brown's zero-order model. Eastern-European Journal of Enterprise Technologies, 6 (9 (114)), 47–53. doi: https://doi.org/10.15587/1729-4061.2021.244623
  44. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419

Downloads

Published

2022-02-25

How to Cite

Pospelov, B., Andronov, V., Krainiukov, O., Karpets, K., Bezuhla, Y., Fisun, K., Manzhura, S., Hryshko, S., Mukhina, O., & Ivanova, V. (2022). Modifying the method for forecasting hazardous processes with unknown dynamics in the presence of noise. Eastern-European Journal of Enterprise Technologies, 1(4 (115), 29–36. https://doi.org/10.15587/1729-4061.2022.252076

Issue

Section

Mathematics and Cybernetics - applied aspects