Establishing an interconnection between the technical and technological parameters of milking equipment based on the movement of a milk-air mixture in a milking machine

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.253978

Keywords:

milking machine, vacuum system, milk-air mixture, milk discharge speed, vacuummetric pressure

Abstract

Machine milking is one of the main technological processes in the dairy industry whose efficiency level largely affects cattle breeding in general. The key role, in this case, belongs to milking equipment. The design and use of technical means of milking are associated with certain difficulties related to the imperfection of milk discharge. Therefore, the current study is due to the need to investigate the process of moving the milk mixture in a milking machine.

A physical-mathematical model of the process of moving the two-phase milk-air mixture along the milk-conducting line of a milking machine has been built. The mathematical model relates the value of the fluctuating of vacuummetric pressure ΔP, the rate of milk discharge QM, the pulse rate ζ, and the value of working vacuummetric pressure P. It was found that in the milk-conducting system with the upper milk pipeline there is a large fluctuation of vacuummetric pressure ΔP=1.02–4.69 kPa, which exceeds the regulated value (2.5 kPa). In a milk-conducting system with a lower milk pipeline, the vacuummetric pressure fluctuation is ΔP=0.59–1.84 kPa.

The patterns of change in the value of working pressure P and the frequency of pulsations ζ in the milking machines of simultaneous and pair action depending on the rate of milk discharge from the udder have been determined.

It is established that the maximum deviation of the value of fluctuation of vacuummetric pressure ΔP between the experimental and theoretical data within a predefined range of factors is 0.81 kPa. The correlation coefficient is 0.92, which indicates the adequacy of the constructed models. Owing to this, the task of the rational choice of milking equipment is resolved

Author Biographies

Elchyn Aliiev, Dnipro State Agrarian and Economic University

Doctor of Technical Sciences, Senior Researcher, Professor

Department of Mechanization of Production Processes in Animal Husbandry

Andriy Paliy, State Biotechnological University

Doctor of Agricultural Sciences, Professor

Department of Technologies Animal Husbandry and Poultry

Volodymyr Dudin, Dnipro State Agrarian and Economic University

PhD, Associate Professor, Head of Department

Department of Mechanization of Production Processes in Animal Husbandry

Viktor Kis, State Biotechnological University

PhD, Associate Professor

Department of Mekhatronics and Mashine Parts

Anatoliy Paliy, National Scientific Center «Institute of Experimental and Clinical Veterinary Medicine»

Doctor of Veterinary Sciences, Professor

Laboratory of Veterinary Sanitation and Parasitology

Volodymyr Ostapenko, Sumy National Agrarian University

PhD, Associate Professor

Department of Technology of Production and Processing of Animal Products and Cinology

Iruna Levchenko, Sumy National Agrarian University

PhD, Associate Professor

Department of Technology of Production and Processing of Animal Products and Cinology

Mikola Prihodko, Sumy National Agrarian University

PhD, Associate Professor

Department of Technology of Production and Processing of Animal Products and Cinology

Olga Korg, Sumy National Agrarian University

PhD, Associate Professor

Department of Fodder Technology and Animal Feeding

Larysa Kladnytska, National University of Life and Environmental Sciences of Ukraine

Doctor of Veterinary Sciences, Associate Professor

Department of Biochemistry and Physiology of Animals named after Academician M. F. Gulyi

References

  1. Ivanova, L. (2017). Milk succession: current status and problems of solution. Agrosvit, 22, 23–27. Available at: http://www.agrosvit.info/index.php?op=1&z=2503&i=3
  2. Pezzuolo, A., Cillis, D., Marinello, F., Sartori, L. (2017). Estimating efficiency in automatic milking systems. doi: https://doi.org/10.22616/erdev2017.16.n148
  3. Paliy, A., Nanka, A., Marchenko, M., Bredykhin, V., Paliy, A., Negreba, J. et. al. (2020). Establishing changes in the technical parameters of nipple rubber for milking machines and their impact on operational characteristics. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 78–87. doi: https://doi.org/10.15587/1729-4061.2020.200635
  4. Tremblay, M., Hess, J. P., Christenson, B. M., McIntyre, K. K., Smink, B., van der Kamp, A. J. et. al. (2016). Factors associated with increased milk production for automatic milking systems. Journal of Dairy Science, 99 (5), 3824–3837. doi: https://doi.org/10.3168/jds.2015-10152
  5. Palii, А. P., Handola, Yu. M., Shevchenko, I. O., Stotskyi, A. O., Stotskyi, O. G., Sereda, A. I. et. al. (2020). Assessment of cow lactation and milk parameters when applying various milking equipment. Ukrainian Journal of Ecology, 10 (4), 195–201. Available at: https://www.ujecology.com/articles/assessment-of-cow-lactation-and-milk-parameters-when-applying-various-milking-equipment.pdf
  6. Paliy, A., Aliiev, E., Nanka, A., Bogomolov, O., Bredixin, V., Paliy, A. et. al. (2021). Identifying changes in the technical parameters of milking rubber under industrial conditions to elucidate their effect on the milking process. Eastern-European Journal of Enterprise Technologies, 3 (1 (111)), 21–29. doi: https://doi.org/10.15587/1729-4061.2021.231917
  7. Achkevych, O. M., Achkevych, O. I. (2019). Vstanovlennia parametriv systemy transportuvannia moloka vid kolektora do molokoprovodu. Visnyk KhNTUSH, 2, 28–37.
  8. Galicheva, M. S., Dokhuzhev, Yu. G., Golovan', V. T. (2009). Puti sokrascheniya poter' moloka pri doenii v molokoprovod. Novye tekhnologii, 3, 12–16.
  9. Ul'yanov, V. M., Khripin, V. A., Nabatchikov, A. V., Panferov, N. S., Khripin, A. A. (2017). Obosnovanie konstruktivno-rezhimnykh parametrov doil'nogo apparata s verkhnim otvodom moloka iz kollektora. Vestnik Ryazanskogo gosudarstvennogo agrotekhnologicheskogo universiteta im. P. A. Kostycheva, 3 (35), 106–113.
  10. Vukolov, V. I., Boltianska, N. I. (2020). Suchasni pidkhody do doinnia vysokoproduktyvnykh koriv. Tekhnichnyi prohres u tvarynnytstvi ta kormovyrobnytstvi: materialy IX Mizhnarodnoi naukovo-tekhnichnoi konferentsiyi. Hlevakha - Kyiv, 106–108.
  11. Dmytriv, V., Dmytriv, I., Lavryk, Y., Horodeckyy, I. (2018). Models of adaptation of the milking machines systems. BIO Web of Conferences, 10, 02004. doi: https://doi.org/10.1051/bioconf/20181002004
  12. Shevchenko, I. A., Aliev, E. B. (2012). Pidvyshchennia yakosti vykonannia tekhnolohichnoho protsesu mashynnoho doinnia. Visnyk ahrarnoi nauky, 6, 57–59.
  13. Lynnyk, Yu. O., Pavlenko, S. I., Hrytsun, A. V. (2014). Doslidzhennia dynamiky zmin kolyvan vakuummetrychnoho tysku v avtomatyzovaniy doilniy ustanovtsi. Zb. nauk. prats Vinnytskoho natsionalnoho ahrarnoho universytetu, 1 (84), 104–108.
  14. Achkevych, V. I., Khmelevsky, V. S., Achkevych, O. M. (2020). The influence of the design parameters of the milking machine collector on the oscillation of the vacuum pressure in the suction phase. Meh. Electrif. Agric., 11 (110), 117–123. doi: https://doi.org/10.37204/0131-2189-2020-11-13
  15. Enokidani, M., Kawai, K., Shinozuka, Y., Watanabe, A. (2016). Milking performance evaluation and factors affecting milking claw vacuum levels with flow simulator. Animal Science Journal, 88 (8), 1134–1140. doi: https://doi.org/10.1111/asj.12741
  16. Paliy, A., Aliiev, E., Paliy, A., Ishchenko, K., Shkromada, O., Musiienko, Y. et. al. (2021). Development of a device for cleansing cow udder teats and testing it under industrial conditions. Eastern-European Journal of Enterprise Technologies, 1 (1 (109)), 43–53. doi: https://doi.org/10.15587/1729-4061.2021.224927
  17. Golisz, E., Kupczyk, A., Majkowska, M., Trajer, J. (2021). Simulation Tests of a Cow Milking Machine – Analysis of Design Parameters. Processes, 9 (8), 1358. doi: https://doi.org/10.3390/pr9081358
  18. Shevchenko, I. A., Aliev, E. B. (2013). Naukovo-metodychni rekomendatsiyi z bahatokryterialnoho vyrobnychoho kontroliu doilnykh ustanovok. Zaporizhzhia: Aktsent Invest-treid, 156.
  19. Krasovskiy, G. I., Filaretov, G. F. (1982). Planirovanie eksperimenta. Minsk: Izd-vo BGU, 302.
  20. Aliev, E. B., Bandura, V. M., Pryshliak, V. M., Yaropud, V. M., Trukhanska, O. O. (2018). Modeling of mechanical and technological processes of the agricultural industry. INMATEH – Agricultural Engineering, 54 (1), 95–104.
  21. Lutsenko, M., Halai, O., Legkoduh, V., Lastovska, I., Borshch, O., Nadtochii, V. (2021). Milk production process, quality and technological properties of milk for the use of various types of milking machines. Acta Scientiarum. Animal Sciences, 43, e51336. doi: https://doi.org/10.4025/actascianimsci.v43i1.51336
  22. Jacobs, J. A., Siegford, J. M. (2012). Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. Journal of Dairy Science, 95 (5), 2227–2247. doi: https://doi.org/10.3168/jds.2011-4943
  23. Lyons, N. A., Kerrisk, K. L. (2017). Current and potential system performance on commercial automatic milking farms. Animal Production Science, 57 (7), 1550. doi: https://doi.org/10.1071/an16513
  24. Paliy, A., Naumenko, A., Paliy, A., Zolotaryova, S., Zolotarev, A., Tarasenko, L. et. al. (2020). Identifying changes in the milking rubber of milking machines during testing and under industrial conditions. Eastern-European Journal of Enterprise Technologies, 5 (1 (107)), 127–137. doi: https://doi.org/10.15587/1729-4061.2020.212772

Downloads

Published

2022-04-28

How to Cite

Aliiev, E., Paliy, A., Dudin, V., Kis, V., Paliy, A., Ostapenko, V., Levchenko, I., Prihodko, M., Korg, O., & Kladnytska, L. (2022). Establishing an interconnection between the technical and technological parameters of milking equipment based on the movement of a milk-air mixture in a milking machine. Eastern-European Journal of Enterprise Technologies, 2(1 (116), 35–46. https://doi.org/10.15587/1729-4061.2022.253978

Issue

Section

Engineering technological systems