Designing an automated control system for changing NPU energy release compensating for arising internal disturbing factors based on their approximation model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2022.258394

Keywords:

power maneuvering, Pade approximation, approximation model, xenon oscillations, reactivity

Abstract

The necessity of keeping in working condition the sources of traditional electricity generation for dispatching the supply of electricity from the capacities of "green" electricity generation has been realized. Potentially, one of these sources may be nuclear power plants. An obstacle to their use as a participant in dispatching is the impossibility of maneuvering with power in a wide range. One of the reasons for limiting the range is the complexity of automatic compensation for the reactivity of the xenon oscillation reactor.

Existing physical and mathematical models for calculating the parameters of processes in the reactor due to changes in its power because of its complexity cannot be used in operational automatic control systems. The task of constructing an approximation linear model of processes in the reactor in the form of a transfer function is set.

To build an approximation model, the inverse problem is solved. The desired model is based on the condition of coincidence at some time interval of the results of solving it with the results of a detailed physical-mathematical model. To this end, a number of sequential actions are performed, including approximation of the results of the expanded physical-mathematical model using a series, the application of the Laplace transformation to this series, as well as Pade approximation obtained in the space of the images of the series.

The method of control was proposed and an automatic control system (ACS) for energy production of nuclear power plant has been synthesized. To this end, the management system was integrated with the approximation model of the active zone, which provided the possibility for adjusting the quantitative degree of stability of the active zone.

ACS consists of three control circuits. Such a structure has made it possible to compensate for the xenon oscillations that occur.

Additionally, ACS reduces the movement of adjusting rods in the active zone, which reduces local power surges in nuclear fuel and leads to an increase in its durability

Author Biographies

Olexander Brunetkin, Odessа Polytechnic National University

Doctor of Technical Sciences, Professor

Department of Computer Technologies of Automation

Konstantin Beglov, Odessа Polytechnic National University

PhD, Associate Professor

Department of Computer Technologies of Automation

Maksym Maksymov, Naval Institute of the National University "Odessa Maritime Academy"

Doctor of Technical Sciences, Professor, Chief Researcher

Scientific Center

Volodymyr Baskakov, EnErTek LTD

Chief Project Engineer

Head Office

Viktoriia Vataman, Odessа Polytechnic National University

Postgraduate Student

Department of Computer Technologies of Automation

Viktoriia Kryvda, Odessа Polytechnic National University

PhD, Associate Professor, Head of Graduate School

Department of Postgraduate and Doctoral Studies

References

  1. Maksymov, M., Alyokhina, S., Brunetkin, O. (2021). Thermal and Reliability Criteria for Nuclear Fuel Safety. River Publishers, 250.
  2. Yastrebenetskiy, M. A., Rozen, Yu. V., Vinogradskaya, S. V., Dzhonson, G., Eliseev, V. V., Siora, A. A. et. al. (2011). Sistemy upravleniya i zaschity yadernykh reaktorov. Kyiv: Osnova-Print, 768. Available at: http://library.kpi.kharkov.ua/files/new_postupleniya/yastrebenitskiy.pdf
  3. Todortsev, Y., Foshch, T., Nikolsky, M. (2013). Analysis of methods for controlling power unit with a pressurized water reactor in maneuvering. Eastern-European Journal of Enterprise Technologies, 6 (8 (66), 3–10. doi: https://doi.org/10.15587/1729-4061.2013.19134
  4. Aver'yanova, S. P., Semchenkov, Yu. M., Filimonov, P. E. et. al. (2005). Vnedrenie usovershenstvovannykh algoritmov upravleniya energovydeleniem aktivnoy zony VVER-1000 na Khmel'nitskoy AES. Atomnaya energiya, 98 (6), 414–421. Available at: http://elib.biblioatom.ru/text/atomnaya-energiya_t98-6_2005/go,14/
  5. Mercier, B., Ziliang, Z., Liyi, C., Nuoya, S. (2020). Modeling and control of xenon oscillations in thermal neutron reactors. EPJ Nuclear Sciences & Technologies, 6, 48. doi: https://doi.org/10.1051/epjn/2020009
  6. Wang, L., Zhao, J., Liu, D., Lin, Y., Zhao, Y., Lin, Z. et. al. (2017). Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems. Energies, 10 (2), 173. doi: https://doi.org/10.3390/en10020173
  7. Rady, K., Abouelsoud, A. A., Kotb, S. A., El Metwally, M. M. (2020). Modeling and Estimation of Nuclear Reactor Performance Using Fractional Neutron Point Kinetics with Temperature Effect and Xenon Poisoning. Nuclear Science and Engineering, 194 (7), 572–582. doi: https://doi.org/10.1080/00295639.2020.1755808
  8. Saadatzi, S., Ansarifar, G. (2017). Robust observer-based non-linear control for PWR nuclear reactors with bounded xenon oscillations during load-following operation using two-point nuclear reactor model. International Journal of Nuclear Energy Science and Technology, 11 (1), 22. doi: https://doi.org/10.1504/ijnest.2017.085075
  9. Brunetkin, O., Beglov, K., Brunetkin, V., Maksymov, О., Maksymova, O., Havaliukh, O., Demydenko, V. (2020). Construction of a method for representing an approximation model of an object as a set of linear differential models. Eastern-European Journal of Enterprise Technologies, 6 (2 (108)), 66–73. doi: https://doi.org/10.15587/1729-4061.2020.220326
  10. Butyrsky, Eu. Yu., Kuvaldin, I. A., Chalkin, V. P. (2010). Multidimensional functions' approximation. Nauchnoe priborostroenie, 20 (2), 82–92. Available at: https://cyberleninka.ru/article/n/approksimatsiya-mnogomernyh-funktsiy
  11. Kolmogorov, A. N. (1956). O predstavlenii nepreryvnykh funktsiy neskol'kikh peremennykh superpozitsiyami nepreryvnykh funktsiy men'shego chisla peremennykh. Izvestiya AN SSSR, 108, 179–182.
  12. Arnol'd, V. I. (1963). O funktsii trekh peremennykh. Izvestiya AN SSSR, 114.
  13. Amat, S., Levin, D., Ruiz-Álvarez, J. (2021). A two-stage approximation strategy for piecewise smooth functions in two and three dimensions. IMA Journal of Numerical Analysis. doi: https://doi.org/10.1093/imanum/drab068
  14. Kolmogorov, A. N. (1957). O predstavlenii nepreryvnykh funktsiy neskol'kikh peremennykh v vide superpozitsiy nepreryvnykh funktsiy odnogo peremennogo i slozheniya. DAN SSSR, 114 (5), 953–956.
  15. Shi, E., Xu, C. (2021). A comparative investigation of neural networks in solving differential equations. Journal of Algorithms & Computational Technology, 15, 174830262199860. doi: https://doi.org/10.1177/1748302621998605
  16. Shimazu, Y. (2008). Xenon Oscillation Control in Large PWRs Using a Characteristic Ellipse Trajectory Drawn by Three Axial Offsets. Journal of Nuclear Science and Technology, 45 (4), 257–262. doi: https://doi.org/10.1080/18811248.2008.9711435
  17. Parhizkari, H., Aghaie, M., Zolfaghari, A., Minuchehr, A. (2015). An approach to stability analysis of spatial xenon oscillations in WWER-1000 reactors. Annals of Nuclear Energy, 79, 125–132. doi: https://doi.org/10.1016/j.anucene.2015.01.026
  18. Aver’yanova, S. P., Semchenkov, Y. M., Filimonov, P. E., Gorokhov, A. K., Molchanov, V. L., Korennoi, A. A., Makeev, V. P. (2005). Adoption of Improved Algorithms for Controlling the Energy Release of a VVER-1000 Core at the Khmel’nitskii Nuclear Power Plant. Atomic Energy, 98 (6), 386–393. doi: https://doi.org/10.1007/s10512-005-0222-6
  19. Maksimov, M. V., Tsiselskaya, T. A., Kokol, E. A. (2015). The Method of Control of Nuclear Power Plant with VVER-1000 Reactor in Maneuverable Mode. Journal of Automation and Information Sciences, 47 (6), 17–32. doi: https://doi.org/10.1615/jautomatinfscien.v47.i6.20
  20. Chernyshov, N. N. (2013). Komp'yuternye programmy dlya neytronno-fizicheskogo rascheta yadernykh reaktorov AES. Radioelektronika i informatika, 3 (62). Available at: https://openarchive.nure.ua/handle/document/1380
  21. Chernyshov, N. N. et. al. (2008). Ispol'zovanie komp'yuternykh programm dlya neytronno-fizicheskogo rascheta reaktorov atomnykh elektrostantsiy. Vestnik Nats. tekhn. un-ta "KhPI", 25, 130–137. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/33798
  22. Pleshakova, N. V., Anokhin, A. N. (2012). Analiz oshibok, dopuskaemykh operatorami BSchU AES pri ispol'zovanii ekspluatatsionnykh protsedur. Izvestiya VUZov. Yadernaya energetika, 4, 45–57. Available at: https://www.researchgate.net/publication/265179324_Analiz_osibok_dopuskaemyh_operatorami_BSU_AES_pri_ispolzovanii_ekspluatacionnyh_procedur
  23. Foshch, T., Pelykh, S. (2017). Improved models and method of power change of NPP unit with VVER-1000. Automation of Technological and Business Processes, 9 (1). doi: https://doi.org/10.15673/atbp.v9i1.505
  24. Severin, V. P., Nikulina, E. N., Lyutenko, D. A., Bobukh, E. Y. (2014). The problem of maneuverability of unit of nuclear power plant and development of models of its control systems. Bulletin of the National Tech. University "Kharkov Polytechnic Institute", 61 (1103), 24–29. Available at: http://repository.kpi.kharkov.ua/handle/KhPI-Press/13855
  25. Pelykh, S. N., Maksimov, M. V., Nikolsky, M. V. (2014). A method for minimization of cladding failure parameter accumulation probability in VVER fuel elements. Problems of Atomic Science and Technology, 92 (4), 108–116. Available at: http://dspace.nbuv.gov.ua/handle/123456789/80362

Downloads

Published

2022-06-30

How to Cite

Brunetkin, O., Beglov, K., Maksymov, M., Baskakov, V., Vataman, V., & Kryvda, V. (2022). Designing an automated control system for changing NPU energy release compensating for arising internal disturbing factors based on their approximation model . Eastern-European Journal of Enterprise Technologies, 3(2 (117), 63–75. https://doi.org/10.15587/1729-4061.2022.258394