The parallelism in the algorithm of the synthesis of models of optimal complexity based on the genetic algorithms

Authors

  • Михайло Іванович Горбійчук Ivano-Frankivsk National Technical University of Oil and Gas Carpatska, 15, Ivano-Frankivsk, Ukraine, 76018, Ukraine https://orcid.org/0000-0002-2758-1381
  • Віра Михайлівна Медведчук Ivano-Frankivsk National Technical University of Oil and Gas Carpatska, 15, Ivano-Frankivsk, Ukraine, 76018, Ukraine https://orcid.org/0000-0002-2760-3456
  • Богдан Васильович Пашковський Ivano-Frankivsk National Technical University of Oil and Gas Carpatska, 15, Ivano-Frankivsk, Ukraine, 76018, Ukraine https://orcid.org/0000-0003-1082-6837

DOI:

https://doi.org/10.15587/1729-4061.2014.26305

Keywords:

empirical model, internal parallelism, algorithm graph, circle, circle width, algorithm graph height, computer system, parallel structure

Abstract

An analysis of methods for constructing mathematical models has shown that one of the most promising methods for constructing such models is the inductive method of model self-organization that allows to obtain the model of optimal complexity. The disadvantage of this method is its high dimensionality, which limits the scope of this method. A method of the synthesis of models of optimal complexity based on the genetic algorithms, which has a much smaller dimensionality than the inductive method of model self-organization, can be an alternative to it. But for complex technical facilities with a large number of input variables, computing time expenditures are still quite noticeable. In order to reduce such expenditures, analysis of the method of constructing empirical models of optimal complexity based on the genetic algorithms of optimal complexity for parallelism by constructing the algorithm graphs was carried out. It was shown that this algorithm has an internal parallelism, which allows to develop an effective program of the algorithm implementation on a parallel-structure computer system, and this in turn would reduce the computer time expenditures at the practical implementation of the algorithm.

Author Biographies

Михайло Іванович Горбійчук, Ivano-Frankivsk National Technical University of Oil and Gas Carpatska, 15, Ivano-Frankivsk, Ukraine, 76018

Professor

Computer Systems and Networks Department

Віра Михайлівна Медведчук, Ivano-Frankivsk National Technical University of Oil and Gas Carpatska, 15, Ivano-Frankivsk, Ukraine, 76018

Post-Graduate student

Computer Systems and Networks Department

Богдан Васильович Пашковський, Ivano-Frankivsk National Technical University of Oil and Gas Carpatska, 15, Ivano-Frankivsk, Ukraine, 76018

Post-Graduate student

Computer Systems and Networks Department

References

  1. Gorbіjchuk, M. І., Shhupak, І. V., Oskolіp, T. (2011). Metod sintezu empіrichnih modelej z vrahuvannjam pohibok vimіrjuvan'. Metodi ta priladi kontrolju jakostі, 2 (27), 67–76.
  2. Gorbіjchuk, M. І., Shufnarovich, M. A. (2010). Metod pobudovi matematichnih modelej skladnih procesіv na zasadah genetichnih algoritmіv. Shtuchnij іntelekt, 4, 50–57.
  3. Voevodin, V. V., Voevodin, V. V. (2002). Parallel'nye vychislenija. SPb: BHV-Peterburg, 608.
  4. Ermakov, S. M., Zhigljavskij, A. A. (1987). Matematicheskaja teorija optimal'nogo jeksperimenta. Moscow: Nauka, 320.
  5. Ivahnenko, A. G. (1981). Induktivnyj metod samoorganizacii modelej slozhnyh sistem. Kiev: Naukova dumka, 296.
  6. Gorbіjchuk, M. І., Vasilenko, O. B., Shhupak, І. V. (2009). Metod sintezu empіrichnih modelej na zasadah genetichnih algoritmіv. Rozvіdka ta rozrobka naftovih і gazovih rodovishh, 4 (33), 72–79.
  7. Ortega, Dzh. (1991). Vvedenie v parallel'nye i vektornye metody reshenija linejnyh sistem. Moscow: Mir, 367.
  8. Bjebb, R., Mak-Grou, Dzh., Akselrod, T. (1991). Programmirovanie na parallel'nyh vychislitel'nyh sistemah. Moscow: Mir, 376.
  9. Himich, A. N., Molchanov, I. N., Popov, A. V. (2008). Parallel'nye algoritmy reshenija zadach vychislitel'noj matematiki. Kiev: Naukova dumka, 248.
  10. Ivahnenko, A. G., Koppa, Ju. V., Stepashko, V. S. (1980). Spravochnik po tipovym programmam modelirovanija. Kiev: Tehnіka, 180.
  11. Іvahnenko, O. G., Lapa, V. G. (1969). Peredbachennja vipadkovih procesіv. Kiev: Naukova dumka, 420.
  12. Gorbіjchuk, M. І., Kogutjak, M. І., Zajachuk, Ja. І. (2008). Іnduktivnij metod pobudovi matematichnih modelej gazoperekachuval'nih agregatіv prirodnogo gazu. Naftova і gazova promislovіst', 5, 32–35.
  13. Rutkovskaja, D., Pilins'kij, M., Rudkovskij, L. (2004). Nejronnye seti, geneticheskie algoritmy i nechetkie sistemy. Moscow: Gorjachaja linija-Telekom, 452.
  14. Voevodin, V. V. (2008). Vychislitel'naja matematika i struktura algoritmov. 10 lekcij. Moscow: I-vo MGU, 113.
  15. Volkov, E. A. (1987). Chislennye metody. Moscow: Nauka, 248.

Published

2014-07-24

How to Cite

Горбійчук, М. І., Медведчук, В. М., & Пашковський, Б. В. (2014). The parallelism in the algorithm of the synthesis of models of optimal complexity based on the genetic algorithms. Eastern-European Journal of Enterprise Technologies, 4(2(70), 42–48. https://doi.org/10.15587/1729-4061.2014.26305