Substantiating promising technical solutions for turbo- expander power plants based on the research into working processes and states

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.285865

Keywords:

discrete-continuous strengthening, contact interaction, stressed-strained state, technical characteristics, turbo-expander, heat and mass transfer

Abstract

One of the most rational methods of energy utilization of compressed gas in pipelines is to use turbo-expander installations. In particular, these are autonomous turbo-expander power stations. A fundamentally new concept has been devised to improve the technical and economic performance of this type of machines. This concept is not focused on a separate aspect of the plant's operation but on their entire set. In particular, physical principles, structures, and technologies were considered as an object of research. First, effective parameters of gas-dynamic flows and heat-mass transfer were determined based on the modeling of work processes. Secondly, progressive designs of turbo-expander units have been created. Thirdly, technologies for the production of parts and assemblies of turbo-expander units have been developed, which combine, unlike the traditional ones, different types of strengthening for contacting parts in their pair. A method of parametric modeling was used to substantiate the technical solutions of the elements of turbo-expander power plants. This makes it possible to determine the technical characteristics of these installations under a certain set of parameters. By purposeful variation, a recommended set of their parameters was determined, which ensure the improvement of the most important technical characteristics. A specialized database was built, which contains an array of information about the regularities of the influence of variation of significant parameters on various characteristics of turbo-expander power plants. Already on this basis, the problems of synthesis of successful technical solutions of turbo-expander power plants are solved. As a result, their high energy efficiency is ensured. Thus, the efficiency of the expander was achieved at the level of 86 % while the resource increased by 20–25 %. All these solutions were implemented in a number of unique turbo-expander units. Their effectiveness has been demonstrated during operation

Author Biographies

Mykola Tkachuk, National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Professor

Department of Theory and Computer-Aided Design of Mechanisms and Machines

Gennadiy Lvov, National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Professor

Department of Mathematical Modeling and Intellectual Computing in Engineering

Sergey Kravchenko, National Technical University “Kharkiv Polytechnic Institute”

Doctor of Technical Sciences, Senior Researcher

Department of Engines and Hybrid Power Plants

Serhii Moiseiev, PJSC “Turbogaz”

Deputy Chairman of the Supervisory Board

Maksym Novikov, PJSC “Turbogaz”

Deputy Chairman of the Board, Chief Engineer

Arkadii Burniashev, PJSC “Turbogaz”

Deputy Chief Engineer for Conceptual Solutions and Future Developments

Glib Pakki, PJSC “Turbogaz”

Head of Calculation and Design Department

Serhii Podrieza, Corporation Ukrainian Center of Expertise and Certification of Aviation Equipments (Corporation UKRECA)

Doctor of Economic Sciences, Professor

Chairman of the Board of Directors

References

  1. Avetian, T., Rodriguez, L. (2020). Fundamentals of turboexpander design and operation. Available at: https://fliphtml5.com/gktj/sepi/basic
  2. Logan Jr., E. (2003). Handbook of Turbomachinery. CRC Press, 880. doi: https://doi.org/10.1201/9780203911990
  3. Dixon, S. L., Hall, C. A. (2010). Fluid Mechanics and Thermodynamics of Turbomachinery. Elsevier. doi: https://doi.org/10.1016/c2009-0-20205-4
  4. Simms, J. (2009). Fundamentals of Turboexpanders “basic theory and design”. Available at: https://www.researchgate.net/file.PostFileLoader.html?id=5236f8abd039b1146f66ab16&assetKey=AS%3A272141839208458%401441895078987
  5. Saravanamuttoo, H. I. H., Cohen, H., Rogers, G. F. C. (2008). Gas Turbine Theory. Pearson. Available at: https://soaneemrana.org/onewebmedia/GAS%20TURBINE%20THEORY%20BY%20HIH%20SARAVANAMUTTOO,%20H.%20COHEN%20&%20GFC%20ROGERS.pdf
  6. White, F. (2008). Fluid Mechanics. McGraw-Hill. Available at: http://ftp.demec.ufpr.br/disciplinas/TM240/Marchi/Bibliografia/White_2011_7ed_Fluid-Mechanics.pdf
  7. Kundu, P., Cohen, I., Dowling, D. (2016). Fluid mechanics. Academic Press. doi: https://doi.org/10.1016/c2012-0-00611-4
  8. Korpela, S. A. (2011). Principles of Turbomachinery. John Wiley & Sons. doi: https://doi.org/10.1002/9781118162477
  9. Gorla, R. S. R., Khan, A. A. (2003). Turbomachinery Design and Theory. CRC Press. doi: https://doi.org/10.1201/9780203911600
  10. Expander-generator. Available at: https://turbogaz.com.ua/uk/equipment/dgu_ua
  11. Moiseev, A. N. (2015). Energoeffektivnaya turboelektromekhanicheskaya sistema dlya gazoraspredelitel'nykh stantsiy. Visnyk NTU «KhPI», 12 (1121), 356–359. Available at: http://library.kpi.kharkov.ua/files/Vestniki/2015_12_0.pdf
  12. Kuprygin, O., Moiseev, S., Pastukhova, E., Polivanov, V. (2005). Utilizatsionnye turbodetandernye agregaty OAO «Turbogaz». Energetica Moldovei. Aspecte regionale de dezvoltare. Ediția I. Chișinău, 260–265. Available at: https://ibn.idsi.md/vizualizare_articol/64789
  13. Fluitech Systems. Available at: http://fluitech.com.ua/
  14. Marchenko, A., Grabovskiy, A., Tkachuk, M., Shut, O., Tkachuk, M. (2021). Detuning of a Supercharger Rotor from Critical Rotational Velocities. Advances in Design, Lecture Notes in Mechanical Engineering, 137–145. doi: https://doi.org/10.1007/978-3-030-77823-1_14
  15. Tkachuk, M., Shut, O., Marchenko, A., Grabovskiy, A., Lipeiko, A., Polyvianchuk, A. et al. (2021). Strength and Stability Criteria Limiting Geometrical Dimensions of a Cantilever Impeller. SAE Technical Paper Series. doi: https://doi.org/10.4271/2021-01-5056
  16. Marchenko, A., Pylyov, V., Linkov, O. (2021). Estimation of Strength of the Combustion Chamber of the ICE Piston with a TBC Layer. Integrated Computer Technologies in Mechanical Engineering - 2020, 415–426. doi: https://doi.org/10.1007/978-3-030-66717-7_35
  17. Tkachuk, M. M., Grabovskiy, A., Tkachuk, M. A., Zarubina, A., Lipeyko, A. (2021). Analysis of elastic supports and rotor flexibility for dynamics of a cantilever impeller. Journal of Physics: Conference Series, 1741 (1), 012043. doi: https://doi.org/10.1088/1742-6596/1741/1/012043
  18. Marchenko, A., Tkachuk, M. A., Kravchenko, S., Tkachuk, M. M., Parsadanov, I. (2020). Experimental Tests of Discrete Strengthened Elements of Machine-Building Structures. Advanced Manufacturing Processes, 559–569. doi: https://doi.org/10.1007/978-3-030-40724-7_57
  19. Subbotina, V., Sobol, O. (2020). Structure and properties of microarc oxide coatings on high-temperature aluminum alloy. Machines. Technologies. Materials, 14 (6), 247–250. Available at: https://stumejournals.com/journals/mtm/2020/6/247
  20. Subbotinа, V., Sоbоl, O., Belozerov, V., Subbotin, A., Smyrnova, Y. (2020). A study of the phase-structural engineering possibilities of coatings on D16 alloy during micro-arc oxidation in electrolytes of different types. Eastern-European Journal of Enterprise Technologies, 4 (12 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.209722
  21. Subbotina, V. V., Al-Qawabeha, U. F., Sobol', O. V., Belozerov, V. V., Schneider, V. V., Tabaza, T. A., Al-Qawabah, S. M. (2019). Increase of the α-Al2O3 phase content in MAO-coating by optimizing the composition of oxidated aluminum alloy. Functional materials, 26 (4), 752–758. doi: https://doi.org/10.15407/fm26.04.752
  22. Subbotin, O., Bilozerov, V., Volkov, O., Subbotinа, V., Shevtsov, V. (2022). Friction properties of mаo coatings on aluminum alloys. Bulletin of the National Technical University «KhPI» Series: Engineering and CAD, 2, 59–63. doi: https://doi.org/10.20998/2079-0775.2022.2.07
  23. Asquith, D., Yerokhin, A., James, N., Yates, J., Matthews, A. (2013). Evaluation of Residual Stress Development at the Interface of Plasma Electrolytically Oxidized and Cold-Worked Aluminum. Metallurgical and Materials Transactions A, 44 (10), 4461–4465. doi: https://doi.org/10.1007/s11661-013-1854-0
  24. Dean, J., Gu, T., Clyne, T. W. (2015). Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method. Surface and Coatings Technology, 269, 47–53. doi: https://doi.org/10.1016/j.surfcoat.2014.11.006
  25. Matykina, E., Arrabal, R., Mohedano, M., Mingo, B., Gonzalez, J., Pardo, A., Merino, M. C. (2017). Recent advances in energy efficient PEO processing of aluminium alloys. Transactions of Nonferrous Metals Society of China, 27 (7), 1439–1454. doi: https://doi.org/10.1016/s1003-6326(17)60166-3
  26. Martin, J., Leone, P., Nominé, A., Veys-Renaux, D., Henrion, G., Belmonte, T. (2015). Influence of electrolyte ageing on the Plasma Electrolytic Oxidation of aluminium. Surface and Coatings Technology, 269, 36–46. doi: https://doi.org/10.1016/j.surfcoat.2014.11.001
  27. Tkachuk, N. A., Kravchenko, S. A., Pylev, V. A., Parsadanov, I. V., Grabovsky, A. V., Veretelnik, O. V. (2019). Discrete and Continual Strengthening of Contacting Structural Elements: Conception, Mathematical and Numerical Modeling. Nauka i tekhnika, 18 (3), 240–247. URL: https://sat.bntu.by/jour/article/view/1980/1794
  28. Paggi, M., Barber, J. R. (2011). Contact conductance of rough surfaces composed of modified RMD patches. International Journal of Heat and Mass Transfer, 54 (21-22), 4664–4672. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.011
  29. Zavarise, G., Borri-Brunetto, M., Paggi, M. (2007). On the resolution dependence of micromechanical contact models. Wear, 262 (1-2), 42–54. doi: https://doi.org/10.1016/j.wear.2006.03.044
  30. Pohrt, R., Popov, V. L. (2013). Contact Mechanics of Rough Spheres: Crossover from Fractal to Hertzian Behavior. Advances in Tribology, 2013, 1–4. doi: https://doi.org/10.1155/2013/974178
  31. Pohrt, R., Popov, V. L. (2013). Contact stiffness of randomly rough surfaces. Scientific Reports, 3 (1). doi: https://doi.org/10.1038/srep03293
  32. Liu, J., Ke, L., Zhang, C. (2021). Axisymmetric thermoelastic contact of an FGM-coated half-space under a rotating punch. Acta Mechanica, 232 (6), 2361–2378. doi: https://doi.org/10.1007/s00707-021-02940-7
  33. Liu, T.-J., Yang, F., Yu, H., Aizikovich, S. M. (2019). Axisymmetric adhesive contact problem for functionally graded materials coating based on the linear multi-layered model. Mechanics Based Design of Structures and Machines, 49 (1), 41–58. doi: https://doi.org/10.1080/15397734.2019.1666721
  34. Martynyak, R. M., Prokopyshyn, I. A., Prokopyshyn, I. I. (2015). Contact of Elastic Bodies with Nonlinear Winkler Surface Layers. Journal of Mathematical Sciences, 205 (4), 535–553. doi: https://doi.org/10.1007/s10958-015-2265-0
  35. Tkachuk, M. (2018). A numerical method for axisymmetric adhesive contact based on kalker’s variational principle. Eastern-European Journal of Enterprise Technologies, 3 (7 (93)), 34–41. doi: https://doi.org/10.15587/1729-4061.2018.132076
  36. Tkachuk, M., Grabovskiy, A., Tkachuk, M., Hrechka, I., Sierykov, V. (2021). Contact Interaction of a Ball Piston and a Running Track in a Hydrovolumetric Transmission. Lecture Notes in Mechanical Engineering, 195–203. doi: https://doi.org/10.1007/978-3-030-77823-1_20
  37. Vollebregt, E. A. H. (2012). 100-fold speed-up of the normal contact problem and other recent developments in «CONTACT». Proceedings of the 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Chengdu. Available at: https://www.researchgate.net/publication/286332997_100-fold_speed-up_of_the_normal_contact_problem_and_other_recent_developments_in_contact
  38. Li, J., Berger, E. J. (2003). A semi-analytical approach to three-dimensional normal contact problems with friction. Computational Mechanics, 30 (4), 310–322. doi: https://doi.org/10.1007/s00466-002-0407-y
  39. Motreanu, D. (2001). Eigenvalue problems for variational-hemivariational inequalities in the sense of P. D. Panagiotopoulos. Nonlinear Analysis, 47 (8), 5101–5112. doi: https://doi.org/10.1016/s0362-546x(01)00620-4
Substantiating promising technical solutions for turbo- expander power plants based on the research into working processes and states

Downloads

Published

2023-08-31

How to Cite

Tkachuk, M., Lvov, G., Kravchenko, S., Moiseiev, S., Novikov, M., Burniashev, A., Pakki, G., & Podrieza, S. (2023). Substantiating promising technical solutions for turbo- expander power plants based on the research into working processes and states. Eastern-European Journal of Enterprise Technologies, 4(7 (124), 98–105. https://doi.org/10.15587/1729-4061.2023.285865

Issue

Section

Applied mechanics