Evaluation of a biomass combustion furnace using different kinds of combustion chamber casing materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.288834

Keywords:

coconut shell briquettes, cylindrical shapes, household briquette stoves, thermal characteristics

Abstract

This research systematically evaluates a biomass combustion furnace, focusing on the influence of varying combustion chamber casing materials. The study employs controlled laboratory experiments to investigate the impact of different casing materials on combustion performance, thermal efficiency, and practical applications such as water boiling capacity. The research uses distinct materials, including clay, steel, and aluminum, for combustion chamber casings while maintaining consistent dimensions. The central experimental apparatus, an aluminum stove, was meticulously crafted, adhering to precise measurements. Coconut shell briquettes served as the primary fuel source for this investigation. The results reveal intriguing dynamics in combustion behavior. Notably, the choice of combustion chamber casing material significantly affects fire temperature, sleeve wall temperature, thermal efficiency, and the ability to boil water. Clay emerges as a standout performer, achieving high thermal efficiency (56.8 %), substantial water boiling capacity (25 liters), and efficient fuel consumption (1.28 kg of burnt briquettes). However, steel casing materials excel in generating the highest fire temperatures (up to 557 °C), underscoring their exceptional heat-conducting properties. Aluminum has fast temperature responses but may not retain heat like clay. The findings help optimize biomass combustion furnaces and associated applications. Material selection is crucial to attaining combustion goals like efficiency, temperature generation, or practical heat. These discoveries could lead to more efficient and ecologically friendly biomass combustion systems for sustainable energy and resource use

Author Biographies

Sallolo Suluh, Indonesia Christian University Toraja

Doctorate, Assistant Professor

Department of Mechanical Engineering

Dennis Lorenza, Indonesia Christian University Toraja

Master of Engineering

Department of Mechanical Engineering

Rigel Sampelolo, Indonesia Christian University Toraja

Doctorate, Assistant Professor

Faculty of Teacher Training and Education, English Education Study Program

GAN Pongdatu, Indonesia Christian University Toraja

Master of Computer Science

Faculty of Engineering, Informatics Engineering Study Program

Dina Ramba, Indonesia Christian University Toraja

Master of Management

Departement of Economic

Agus Widyianto, Universitas Negeri Yogyakarta

Doctorate

Department of Mechanical and Automotive Engineering

References

  1. Njenga, M., Karanja, N., Karlsson, H., Jamnadass, R., Iiyama, M., Kithinji, J., Sundberg, C. (2014). Additional cooking fuel supply and reduced global warming potential from recycling charcoal dust into charcoal briquette in Kenya. Journal of Cleaner Production, 81, 81–88. doi: https://doi.org/10.1016/j.jclepro.2014.06.002
  2. Yuliah, Y., Kartawidjaja, M., Suryaningsih, S., Ulfi, K. (2017). Fabrication and characterization of rice husk and coconut shell charcoal based bio-briquettes as alternative energy source. IOP Conference Series: Earth and Environmental Science, 65, 012021. doi: https://doi.org/10.1088/1755-1315/65/1/012021
  3. Amoako, G., Mensah-Amoah, P. (2018). Determination of calorific values of coconut shells and coconut husks. Journal of Materials Science Research and Reviews, 2 (2). Available at: https://ir.ucc.edu.gh/xmlui/handle/123456789/6153
  4. Lukas, A. G., Lombok, J. Z., Anom, I. D. K. (2018). Briquettes Made with Mixtures of Salak Seed (Salacca zalacca) Charcoal and Coconut Shell Charcoal and the Potential as an Alternative Energy Source. International Journal of Applied Engineering Research, 13 (12), 10588–10592. Available at: https://www.ripublication.com/ijaer18/ijaerv13n12_64.pdf
  5. Musabbikhah, Saptoadi, H., Subarmono, Wibisono, M. A. (2016). Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method. AIP Conference Proceedings. doi: https://doi.org/10.1063/1.4943430
  6. Sagdinakiadtikul, T., Supakata, N. (2016). The application of using rice straw coconut shell and rice husk for briquette and charcoal production. International Journal of Energy, Environment and Economics, 24 (2/3), 283–292. Available at: https://www.proquest.com/docview/1903095179?fromopenview=true&pq-origsite=gscholar
  7. Djafar, Z., Suluh, S., Amaliyah, N., Piarah, W. H. (2022). Comparison of the Performance of Biomass Briquette Stoves on Three Types of Stove Wall Materials. International Journal of Design & Nature and Ecodynamics, 16 (6), 145–149. doi: https://doi.org/10.18280/ijdne.170119
  8. Djafar, Z., Amaliyah, N., Suluh, S., Isra, M., Piarah, W. H. (2020). The Performance of Clay Furnace with Variation in the Diameters of the Briquette Burning Chamber. IOP Conference Series: Materials Science and Engineering, 875 (1), 012068. doi: https://doi.org/10.1088/1757-899x/875/1/012068
  9. Wang, J., Lou, H. H., Yang, F., Cheng, F. (2016). Development and performance evaluation of a clean-burning stove. Journal of Cleaner Production, 134, 447–455. doi: https://doi.org/10.1016/j.jclepro.2016.01.068
  10. Orhevba, B. A., Olatunji, O. I., Obasa, P. A. (2018). Performance evaluation of a modified briquette stove. Nigerian Research Journal of Engineering and Environmental Sciences, 3 (2), 898–908. Available at: https://www.researchgate.net/publication/334330905_Performance_evaluation_of_a_modified_briquette_stove
  11. Tyagi, S. K., Pandey, A. K., Sahu, S., Bajala, V., Rajput, J. P. S. (2012). Experimental study and performance evaluation of various cook stove models based on energy and exergy analysis. Journal of Thermal Analysis and Calorimetry, 111 (3), 1791–1799. doi: https://doi.org/10.1007/s10973-012-2348-9
  12. Hailu, A. (2022). Development and performance analysis of top lit updraft: natural draft gasifier stoves with various feed stocks. Heliyon, 8 (8), e10163. doi: https://doi.org/10.1016/j.heliyon.2022.e10163
  13. Bokov, V., Sisa, O., Mirzak, V., Medvedieva, O. (2020). Pressing technology and burning quality of spherical fuel briquettes made from autumn leaves. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 60–72. doi: https://doi.org/10.15587/1729-4061.2020.198724
  14. Okino, J., Komakech, A. J., Wanyama, J., Ssegane, H., Olomo, E., Omara, T. (2021). Performance Characteristics of a Cooking Stove Improved with Sawdust as an Insulation Material. Journal of Renewable Energy, 2021, 1–12. doi: https://doi.org/10.1155/2021/9969806
  15. Akolgo, G. A., Essandoh, E. O., Gyamfi, S., Atta-Darkwa, T., Kumi, E. N., Maia, C. M. B. de F. (2018). The potential of a dual purpose improved cookstove for low income earners in Ghana – Improved cooking methods and biochar production. Renewable and Sustainable Energy Reviews, 82, 369–379. doi: https://doi.org/10.1016/j.rser.2017.09.044
  16. Dang, H., Wang, G., Wang, C., Ning, X., Zhang, J., Mao, X. et al. (2021). Comprehensive Study on the Feasibility of Pyrolysis Biomass Char Applied to Blast Furnace Injection and Tuyere Simulation Combustion. ACS Omega, 6 (31), 20166–20180. doi: https://doi.org/10.1021/acsomega.1c01677
  17. Rasoulkhani, M., Ebrahimi-Nik, M., Abbaspour-Fard, M. H., Rohani, A. (2018). Comparative evaluation of the performance of an improved biomass cook stove and the traditional stoves of Iran. Sustainable Environment Research, 28 (6), 438–443. doi: https://doi.org/10.1016/j.serj.2018.08.001
  18. Bondarenko, I., Kutniashenko, O., Toporov, A., Anishchenko, L., Ziuz, O., Dunayev, I. et al. (2020). Improving the efficiency of equipment and technology of waste briquetting. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 36–52. doi: https://doi.org/10.15587/1729-4061.2020.220349
  19. Murali, G., Channankaiah, P., Hasan, I. E., Anbarasan, P. (2015). Performance study of briquettes from agricultural waste for wood stove with catalytic combustor. International Journal of ChemTech Research, 8 (1), 30–36. Available at: https://sphinxsai.com/2015/ch_vol8_no1/1/(30-36)%20V8N1.pdf
  20. Panwar, N. L. (2010). Performance Evaluation of Developed Domestic Cook Stove with Jatropha Shell. Waste and Biomass Valorization, 1 (3), 309–314. doi: https://doi.org/10.1007/s12649-010-9040-8
  21. Ahiduzzaman, Md., Islam, A. K. M. S. (2013). Development of Biomass Stove for Heating up Die Barrel of Rice Husk Briquette Machine. Procedia Engineering, 56, 777–781. doi: https://doi.org/10.1016/j.proeng.2013.03.194
  22. Kumar, M., Kumar, S., Tyagi, S. K. (2013). Design, development and technological advancement in the biomass cookstoves: A review. Renewable and Sustainable Energy Reviews, 26, 265–285. doi: https://doi.org/10.1016/j.rser.2013.05.010
  23. MacCarty, N., Bryden, K. M. (2013). A Heat Transfer Model for the Conceptual Design of a Biomass Cookstove for Developing Countries. ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. doi: https://doi.org/10.1115/detc2013-12650
  24. Bentson, S., Evitt, D., Still, D., Lieberman, D., MacCarty, N. (2022). Retrofitting stoves with forced jets of primary air improves speed, emissions, and efficiency: Evidence from six types of biomass cookstoves. Energy for Sustainable Development, 71, 104–117. doi: https://doi.org/10.1016/j.esd.2022.09.013
  25. Ambreen, T., Saleem, A., Park, C. W. (2019). Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections. Applied Thermal Engineering, 158, 113781. doi: https://doi.org/10.1016/j.applthermaleng.2019.113781
  26. Wang, J., Gan, Y., Liang, J., Tan, M., Li, Y. (2019). Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Applied Thermal Engineering, 151, 475–485. doi: https://doi.org/10.1016/j.applthermaleng.2019.02.036
  27. Li, X., He, L., Qian, P., Huang, Z., Luo, C., Liu, M. (2021). Heat transfer enhancement of droplet two-phase flow in cylindrical microchannel. Applied Thermal Engineering, 186, 116474. doi: https://doi.org/10.1016/j.applthermaleng.2020.116474
  28. Ikram, M. Md., Saha, G., Saha, S. C. (2023). Unsteady conjugate heat transfer characteristics in hexagonal cavity equipped with a multi-blade dynamic modulator. International Journal of Heat and Mass Transfer, 200, 123527. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123527
Evaluation of a biomass combustion furnace using different kinds of combustion chamber casing materials

Downloads

Published

2023-10-31

How to Cite

Suluh, S., Lorenza, D., Sampelolo, R., Pongdatu, G., Ramba, D., & Widyianto, A. (2023). Evaluation of a biomass combustion furnace using different kinds of combustion chamber casing materials. Eastern-European Journal of Enterprise Technologies, 5(8 (125), 6–15. https://doi.org/10.15587/1729-4061.2023.288834

Issue

Section

Energy-saving technologies and equipment