The development of method for increasing the decision making efficiency in organizational and technical systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2023.293675

Keywords:

organizational and technical systems, decision making support systems, complex processes, optimization tasks

Abstract

The object of research is decision making processes in decision making support systems. The subject of the research is a method of decision making in management tasks using the walrus flock algorithm (WA), an advanced genetic algorithm and evolving artificial neural networks.

A method of finding solutions using an improved walrus flock algorithm is proposed. The research is based on the walrus flock algorithm for finding a solution to the object’s condition. Evolving artificial neural networks are used to train walrus agents and an advanced genetic algorithm is used to select the best walrus agents. The method has the following sequence of actions:

– input of initial data;

– WA numbering in the flock;

– determination of the initial speed of WA;

– display of WA along the search plane;

– preliminary assessment of the WA search area;

– classification of food sources for WA;

– sorting of the best WA individuals;

– an update of WA positions;

– WA migration;

– checking the presence of a predator;

– checking the stop criterion;

– escape and struggle with predators;

– checking the stop criterion;

– training of WA knowledge bases;

– determination of the amount of necessary computing resources, intelligent decision making support system.

The originality of the proposed method lies in the placement of WA taking into account the uncertainty of the initial data, improved procedures of global and local edge taking into account the degree of noise of data on the state of organizational and technical systems. The use of the method makes it possible to increase the efficiency of data processing at the level 13–16 % due to the use of additional improved procedures. The proposed method should be used to solve problems of evaluating complex and dynamic processes

Author Biographies

Oleksandr Lytvynenko, Military Institute of Taras Shevchenko National University of Kyiv

PhD, Senior Researcher

Research Center

Robert Bieliakov, Kruty Heroes Military Institute of Telecommunications and Information Technology

PhD, Assoсiate Professor

Yuliia Vakulenko, Poltava State Agrarian University

PhD, Associate Professor

Department of Information Systems and Technologies

Volodymyr Hrinkov, Kruty Heroes Military Institute of Telecommunications and Information Technology

PhD, Associate Professor

Department of Computer Information Technology

Borys Pokhodenko, Kharkiv National Automobile and Highway University

Senior Lecturer

Department of Computer Systems

Sergey Boiko, Scientific-Research Institute of Military Intelligence

Head of Department

Research Department

Viacheslav Kanishov, Kharkiv National Automobile and Highway University

Postgraduate Student

Department of Computer Systems

Yevhenii Drozdyk, Kharkiv National Automobile and Highway University

Postgraduate Student

Department of Computer Systems

Yevhenii Kovtun, Kharkiv National Automobile and Highway University

Postgraduate Student

Department of Computer Systems

Dmitry Leinyk, Scientific-Research Institute of Military Intelligence

Junior Researcher

Research Department

References

  1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viyskova tekhnika, 1, 35–39. Available at: http://nbuv.gov.ua/UJRN/ovt_2015_1_7
  2. Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. doi: https://doi.org/10.15587/1729-4061.2020.203301
  3. Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. doi: https://doi.org/10.21303/2461-4262.2021.001940
  4. Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. doi: https://doi.org/10.21303/2461-4262.2020.001353
  5. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. doi: https://doi.org/10.15587/1729-4061.2020.208554
  6. Shyshatskyi, A. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. doi: https://doi.org/10.30534/ijatcse/2020/206942020
  7. Yeromina, N., Kurban, V., Mykus, S., Peredrii, O., Voloshchenko, O., Kosenko, V. et al. (2021). The Creation of the Database for Mobile Robots Navigation under the Conditions of Flexible Change of Flight Assignment. International Journal of Emerging Technology and Advanced Engineering, 11 (5), 37–44. doi: https://doi.org/10.46338/ijetae0521_05
  8. Rotshteyn, A. P. (1999). Intellektual'nye tekhnologii identifikatsii: nechetkie mnozhestva, geneticheskie algoritmy, neyronnye seti. Vinnitsa: “UNIVERSUM”, 320.
  9. Simankov, V. S., Putyato, M. M. (2013). Issledovanie metodov kognitivnogo analiza. Sistemniy analiz, upravlenie i obrabotka informatsii, 13, 31‒35.
  10. Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. doi: https://doi.org/10.1016/j.ins.2019.01.079
  11. Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. doi: https://doi.org/10.1016/j.autcon.2018.02.025
  12. Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. doi: https://doi.org/10.1016/j.eswa.2018.11.023
  13. Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. doi: https://doi.org/10.1016/j.procs.2018.04.233
  14. Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. doi: https://doi.org/10.1016/j.dss.2019.113114
  15. Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. doi: https://doi.org/10.1016/j.future.2018.06.046
  16. Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. doi: https://doi.org/10.1016/j.cirp.2019.04.001
  17. Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. doi: https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
  18. Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. doi: https://doi.org/10.1016/s0020-7373(86)80040-2
  19. Koval, M., Sova, O., Shyshatskyi, A., Artabaiev, Y., Garashchuk, N., Yivzhenko, Y. et al. (2022). Improving the method for increasing the efficiency of decision-making based on bio-inspired algorithms. Eastern-European Journal of Enterprise Technologies, 6 (4 (120)), 6–13. doi: https://doi.org/10.15587/1729-4061.2022.268621
  20. Han, M., Du, Z., Yuen, K. F., Zhu, H., Li, Y., Yuan, Q. (2024). Walrus optimizer: A novel nature-inspired metaheuristic algorithm. Expert Systems with Applications, 239, 122413. doi: https://doi.org/10.1016/j.eswa.2023.122413
  21. Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197
  22. Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. doi: https://doi.org/10.15587/1729-4061.2021.232718
  23. Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. doi: https://doi.org/10.20998/2522-9052.2021.3.01
  24. Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. doi: https://doi.org/10.20998/2522-9052.2020.4.07
  25. Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. doi: https://doi.org/10.20998/2522-9052.2020.2.05
  26. Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
  27. Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of assessment of the efficiency of the communication of operational troop grouping system. Advanced Information Systems, 4 (1), 107–112. doi: https://doi.org/10.20998/2522-9052.2020.1.16
  28. Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. doi: https://doi.org/10.15587/1729-4061.2016.81292
  29. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. doi: https://doi.org/10.15587/1729-4061.2017.98750
  30. Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the second­order adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. doi: https://doi.org/10.15587/1729-4061.2018.126578
  31. Gorbenko, I., Ponomar, V. (2017). Examining a possibility to use and the benefits of post-quantum algorithms dependent on the conditions of their application. Eastern-European Journal of Enterprise Technologies, 2 (9 (86)), 21–32. doi: https://doi.org/10.15587/1729-4061.2017.96321
  32. Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. doi: https://doi.org/10.15587/1729-4061.2022.266009
  33. Wang, L., Shi, Y., Liu, S. (2015). An improved fruit fly optimization algorithm and its application to joint replenishment problems. Expert Systems with Applications, 42 (9), 4310–4323. doi: https://doi.org/10.1016/j.eswa.2015.01.048
  34. Yuan, X., Dai, X., Zhao, J., He, Q. (2014). On a novel multi-swarm fruit fly optimization algorithm and its application. Applied Mathematics and Computation, 233, 260–271. doi: https://doi.org/10.1016/j.amc.2014.02.005
The development of method for increasing the decision making efficiency in organizational and technical systems

Downloads

Published

2023-12-28

How to Cite

Lytvynenko, O., Bieliakov, R., Vakulenko, Y., Hrinkov, V., Pokhodenko, B., Boiko, S., Kanishov, V., Drozdyk, Y., Kovtun, Y., & Leinyk, D. (2023). The development of method for increasing the decision making efficiency in organizational and technical systems. Eastern-European Journal of Enterprise Technologies, 6(4 (126), 23–31. https://doi.org/10.15587/1729-4061.2023.293675

Issue

Section

Mathematics and Cybernetics - applied aspects