Determining the rational structure of multilayer technical fabric for woven power clamps

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.296839

Keywords:

woven power clamps, multi-layer technical fabric, beating force, thread tension

Abstract

The object of research is multi-layered technical fabrics for woven power clamps. A task to determine the rational structure of a multi-layer technical fabric for power clamps has been solved, which makes it possible to achieve an effect when introduced into production through the minimization of raw material costs and the reduction of energy costs for manufacturing a unit of products. The value of the beating force, the tension of warp threads of the outer protective layers, the force layers, the warp threads for connecting the outer protective layers, and the force layers for two structures of multilayer technical fabric were studied. A comparative analysis of conditions for the formation of two multilayer fabrics from polyamide threads was carried out and a multilayer fabric with the most rational structure was selected, the formation of which would require less technological effort. Experimental studies have made it possible to build regression dependences on determining the influence of the initial tension of warp threads of the outer protective layers on the beating force value. The joint effect of the size of an overstep and the different tension of a shed on the beating force value was established, depending on the structure of a multilayer technical fabric. It is shown that when the tension of warp threads of the outer protective layers increases, the beating force value increases. A value of the tension of warp threads in outer protective layers, force layers, warp threads for connecting the outer protective layers and force layers in the position of an overstep and at the moment of thread beating was determined. Analysis of regression dependences will make it possible to determine the optimal loading parameters of the loom. It has been proven that the beating force value is affected by the structure of a multi-layer technical fabric and the tension of warp threads in outer protective layers. The improved multi-layer technical fabric is used for laying pipes with an external factory-made polyethylene coating

Author Biographies

Volodymyr Shcherban, Kyiv National University of Technologies and Design

Doctor of Technical Sciences, Professor

Department of Computer Science

Gennadij Melnyk, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science

Marijna Kolysko, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science

Anton Kirichenko, Kyiv National University of Technologies and Design

PhD, Associate Professor

Department of Computer Science

Yury Shcherban, State Higher Educational Establishment "Kyiv College of Light Industry"

Doctor of Technical Sciences, Professor

Department of Light Industry Technologies

Serhii Lukianenko, The National Defence University of Ukraine

Researcher

Simulation Modeling Center

Ihor Ostashevskyi, The National Defence University of Ukraine

Researcher

Simulation Modeling Center

Pavlo Vdovin, The National Defence University of Ukraine

Researcher

Simulation Modeling Center

References

  1. Sirková, B. K., Mertová, I. (2017). Woven fabric structural pore models analysis. Fibres and Textiles, 1, 15–24. Available at: http://vat.ft.tul.cz/Archive/VaT_2017_1.pdf
  2. Shcherban’, V., Melnyk, G., Sholudko, M., Kolysko, O., Kalashnyk, V. (2019). Improvement of structure and technology of manufacture of multilayer technical fabric. Fibres and Textiles, 2, 54–63. Available at: http://vat.ft.tul.cz/2019/2/VaT_2019_2_10.pdf
  3. Barburski, M. (2019). Formation of the textile structures for a specified purpose. Fibres and Textiles, 1, 3–10. Available at: http://vat.ft.tul.cz/2019/1/VaT_2019_1_1.pdf
  4. Barburski, M. (2014). Analysis of the mechanical properties of conveyor belts on the three main stages of production. Journal of Industrial Textiles, 45 (6), 1322–1334. https://doi.org/10.1177/1528083714559567
  5. Krmela, J., Krmelova, V. (2018). The tests of low cyclic loading of composites with textile structure on test machine with video-extensometer. Fibres and Textiles, 2, 52–58. Available at: http://vat.ft.tul.cz/2018/2/VaT_2018_2_9.pdf
  6. Shcherban', V. Yu. (1990). Opredelenie tehnologicheskih usiliy v protsesse priboya pri formirovanii mnogosloynoy tehnicheskoy tkani. Izvestiya vysshih uchebnyh zavedeniy. Tehnologiya tekstil'noy promyshlennosti, 3 (195), 44–47. Available at: https://er.knutd.edu.ua/handle/123456789/17888
  7. Koo, Y.-S., Kim, H.-D. (2002). Friction of Cotton Yarn in Relation to Fluff Formation on Circular Knitting Machines. Textile Research Journal, 72 (1), 17–20. https://doi.org/10.1177/004051750207200103
  8. Weber, M. O., Ehrmann, A. (2012). Necessary modification of the Euler–Eytelwein formula for knitting machines. Journal of the Textile Institute, 103 (6), 687–690. https://doi.org/10.1080/00405000.2011.598665
  9. Shcherban’, V., Makarenko, J., Petko, A., Melnyk, G., Shcherban’, Y., Shchutska, H. (2020). Computer implementation of a recursion algorithm for determining the tension of a thread on technological equipment based on the derived mathematical dependences. Eastern-European Journal of Enterprise Technologies, 2 (1 (104)), 41–50. https://doi.org/10.15587/1729-4061.2020.198286
  10. Kovar, R. (2007). Impact of directions on frictional properties of a knitted fabric. Fibres and Textiles, 2, 15–20. Available at: http://vat.ft.tul.cz/Archive/VaT_2007_2.pdf
  11. Sodomka, L., Vargovd, H. (2002). Connection between structure, symmetry and anisotropy of mechanical properties of woven fabric. Fibres and Textiles, 4, 142–148. Available at: http://vat.ft.tul.cz/Archive/VaT_2002_4.pdf
  12. Shcherban’, V., Kolysko, O., Melnyk, G., Sholudko, M., Shcherban’, Y., Shchutska, G. (2020). Determining tension of yarns when interacting with guides and operative parts of textile machinery having the torus form. Fibres and Textiles, 4, 87–95. Available at: http://vat.ft.tul.cz/2020/4/VaT_2020_4_12.pdf
  13. Shcherban’, V., Makarenko, J., Melnyk, G., Shcherban’, Y., Petko, A., Kirichenko, A. (2019). Effect of the yarn structure on the tension degree when interacting with high-curved guide. Fibres and Textiles, 4, 59–68. Available at: http://vat.ft.tul.cz/2019/4/VaT_2019_4_8.pdf
  14. Moučková, E., Mertová, I., Hajská, Š., Vyšanská, M. (2018). Behavior of two and three-fold twisted multifilament yarns. Fibres and Textiles, 4, 51–60. Available at: http://vat.ft.tul.cz/2018/4/VaT_2018_4_11.pdf
  15. Stepanovic, J., Stamenkovic, J., Stojanovic, N. (2003). The influence of size on warp characterist. Fibres and Textiles, 4, 168–171. Available at: http://vat.ft.tul.cz/Archive/VaT_2003_4.pdf
  16. Döonmez, S., Marmarali, A. (2004). A Model for Predicting a Yarn’s Knittability. Textile Research Journal, 74 (12), 1049–1054. https://doi.org/10.1177/004051750407401204
  17. Yakubitskaya, I. A., Chugin, V. V., Shcherban', V. Yu. (1997). Dinamicheskiy analiz usloviy raskladki na tortsevyh uchastkah kanavki motal'nogo barabanchika. Izvestiya vysshih uchebnyh zavedeniy. Tehnologiya tekstil'noy promyshlennosti, 5, 33–36. Available at: https://er.knutd.edu.ua/handle/123456789/17840
  18. Liu, X., Chen, N., Feng, X. (2008). Effect of Yarn Parameters on the Knittability of Glass Ply Yarn. Fibres & Textiles in Eastem Europe, 16, 90–93. Available at: https://www.researchgate.net/publication/242356724_Effect_of_Yarn_Parameters_on_the_Knittability_of_Glass_Ply_Yarn
  19. Hammersley, M. J. (1973). 7—A simple yarn-friction tester for use with knitting yarns. The Journal of The Textile Institute, 64 (2), 108–111. https://doi.org/10.1080/00405007308630420
  20. Sodomka, L., Chrpová, E. (2008). Method of determination of euler friction coefficients of textiles. Fibres and Textiles, 2-3, 28–33. Available at: http://vat.ft.tul.cz/Archive/VaT_2008_2_3.pdf
Determining the rational structure of multilayer technical fabric for woven power clamps

Downloads

Published

2024-02-28

How to Cite

Shcherban, V., Melnyk, G., Kolysko, M., Kirichenko, A., Shcherban, Y., Lukianenko, S., Ostashevskyi, I., & Vdovin, P. (2024). Determining the rational structure of multilayer technical fabric for woven power clamps. Eastern-European Journal of Enterprise Technologies, 1(1 (127), 41–53. https://doi.org/10.15587/1729-4061.2024.296839

Issue

Section

Engineering technological systems