The study of 2-acetylaminotoluene ozonolysis in acetic ACID

Authors

  • Андрій Генрійович Галстян Volodymyr Dahl East Ukrainian National University. (the town of Rubezhnoe), Ukraine Lenin Street 31, town of Rubezhnoe, Lugansk region, Ukraine, 93000, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.29870

Keywords:

ozonolysis, 2-acetylaminotoluene, ozone, acetic acid, oxidation, 2- acetylaminobenzaldehyde, 2-aminobenzoic acid

Abstract

The kinetics and mechanism of ozone reaction with 2-aminotoluene and its acylated derivative in acetic acid were studied in order to determine the possibility of obtaining 2-aminobenzoic acid.

It is shown that the 2-aminotoluene ozonolysis reaction in acetic acid solution runs at high speed, and preferably on the free electron pair of the amino group to form mainly resinous compounds; oxidation products by the methyl group of the substrate are not formed under these conditions. The ozone attack direction changes towards oxidation of the methyl group and the aromatic ring by N-acylation of the amino group. 2-Acetylaminotoluene reacts with ozone to form mainly degradation products of the aromatic ring - aliphatic peroxides (80.7%), and oxidation products by the methyl group - 2-acetylaminobenzaldehyde at early stages and at deeper stages - 2-aminobenzoic acid (14.0%), which if necessary can easily be hydrolyzed to the corresponding 2-aminobenzoic acid.

Ozone is consumed in the reaction in two ways: non-chain ozone consumption mechanism prevails at temperatures of up to 20°C, and chain ozone consumption along with non-chain is observed at higher temperatures.

These data will be useful to develop a method of catalytic oxidation of 2- acetylaminotoluene by ozone to the corresponding benzoic acid.

Author Biography

Андрій Генрійович Галстян, Volodymyr Dahl East Ukrainian National University. (the town of Rubezhnoe), Ukraine Lenin Street 31, town of Rubezhnoe, Lugansk region, Ukraine, 93000

Doctor of Chemistry, Professor of TOV
Department of Technology of organic substances

References

  1. Dayson, G., Mey, P. (1964). Himiya sinteticheskih lekarstvennyih veschestv. Mir, 128–140.
  2. Elderfield, R. C., Covey, I. S., Geiduschek, J. B., Meyer, W. L., Ross, A. B., Ross, J. H. (1958). Synthesis of potential anticancer agents. I. Nitrogen mustards derived from P-N,N-bis(2-chloro-ethyl)-aminobenzaldehyde. The Journal of Organic Chemistry, 23, 1749–1753. doi: 10.1021/jo01105a047
  3. Ventkataraman, K. (1957). Himiya sinteticheskih krasiteley. Vol. 2. Himiya, 821.
  4. Razumovskiy, S. D. Galstyan, G. A., Tyupalo, M. F. (2000). Ozon ta yogo reaktsIYi z alIfatichnimi spolukami. SUDU, 318.
  5. Galstyan, A. G. Sedyih, A. A., Bushuеv, A. S., Tarasenko, A. I. (2006). Okislenie metilfenolov i metilanilinov ozonom v brede uksusnogo angidrida. «Advanced Science in Organic chemistry». Sudak, 147.
  6. Bailey, P. S. (1982). Ozonation in organic chemistry. Nonolefinic Compounds. Vol. 2. N-Y. L. Academic Press, 497.
  7. Hon, Y. S. Wong, Y. C. (2005). Synthetic applications of the amine-base treatment in the ozonolysis of substituted-allyl silyl ethers or -allyl esters via a novel ene-diol type rearrangement. Tetrahedron, 46, 8, 1365–1368. doi: 10.1016/j.tetlet.2004.12.135
  8. Hon, Y. S., Wu, K. C. (2003). Polymer-supported tertiary amine in organic synthesis: a useful reagent in the conversion of alkenes to carbonyl compounds via the corresponding ozonides. Tetrahedron, 59 (4), 493–498. doi: 10.1016/s0040-4020(02)01558-2
  9. Galstyan, G. A. (1992). Reaktsii ozona s alkilbenzolami v zhidkoy faze. Zhurn. fiz. Him, 66 (4), 875–878.
  10. Gurevich, L. V. Karachevtsev, G. V., Kondratov, V. N. (1974). Energiya razryiva himicheskih svyazey. Potentsialyi ionizatsii i srodstvo k elektronu. Mir, 351.
  11. Wei, W., Cheng, Y., Dong, W. (2003). Design and syntheses of efficient and thermally stable diamino chromofhores for NLO application. Arkivoc., 2, 59–69.
  12. Veygand, K. Hilgetag, G. (1967). Metodyi eksperimenta v organicheskoy himii. Himiya, 994.
  13. Galstyan, A. G., Tyupalo, N. F., Andreev, P. Yu. (2003). Kinetika i mehanizm okisleniya 4-nitrotoluola ozonom v rastvore uksusnoy kislotyi v prisutstvii metallbromidnogo katalizatora. Kinetika i kataliz, 44 (1), 91–94.
  14. Galstyan, A. G., Sedyih, A. A. (2006). Okislenie p-krezola ozonom v uksusnom angidride. Zhurn. prikl. Himii, 79 (1), 125–128.
  15. Baryishnikov, S. V., Medvedev, R. B., Fialkov, Yu. Ya. (1986). Vyichislitelnaya matematika v himii i himicheskoy tehnologi. Vischa shkola, 456.
  16. Emanuel, N. M. (1969). Uspehi himii organicheskih perekisnyih soedineniy i autookisleniya. Himiya, 495.
  17. Zaharov, I. V., Galetiy, Yu. V. (1978). Mehanizm i parametryi okisleniya alkilaromaticheskih uglevodorodov v prisutstvii ionov kobalta i broma. Neftehimiya, 18 (4), 615–621.
  18. Emanuel, N. M., Denisov, E. T., Mayzus, Z. K. (1965). Tsepnyie reaktsii okisleniya uglevodorodov v zhidkoy faze. Nauka, 375.
  19. Komissarov, V. D., Komissarova, I. N. Farrahova, G. K., Denisov, E. T. (1979). Tsepnoe razlozhenie ozona v sisteme CH3CHO-O3-O2. Izv. AN SSSR. Ser. him., 6, 1205–1212.

Published

2014-12-11

How to Cite

Галстян, А. Г. (2014). The study of 2-acetylaminotoluene ozonolysis in acetic ACID. Eastern-European Journal of Enterprise Technologies, 6(6(72), 4–8. https://doi.org/10.15587/1729-4061.2014.29870

Issue

Section

Technology organic and inorganic substances