The maximum entropy production principle in the evolution of the macrosystems: some new results

Authors

  • Николай Иванович Делас National Aviation University pr. Komarova, 1, Kyiv, 03680, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.31345

Keywords:

maximum entropy production principle, Ziegler's principle, evolution of complex systems, macrosystems

Abstract

Closed non-equilibrium macrosystems, which are in the process of evolution to the equilibrium state, subject to the maximum entropy production principle are considered in the paper.

A procedure for direct calculation of entropy production in an arbitrary step of evolution is developed. In accordance with the maximum entropy production principle, the nonlinear equations of the distribution dynamics in the non-equilibrium closed system are obtained. It is shown that the development trajectory of such system is entirely determined by the nature of the initial distribution and distribution in the equilibrium state. Far from the equilibrium state, a decisive role in the evolution equation is played not by the difference between these values, but the difference of their logarithms.

The definition of "internal" system time is given.

A theorem, which states that distribution of elements by the phase space cells, which keeps a sum of the logarithms of their number constant is implemented at each time point for the closed non-equilibrium system, developed in accordance with the maximum entropy production principle is proved. Its formulation for the case of continuous distributions is given. The connection with the Liouville's theorem is shown.

Dynamic invariant of the evolution of closed systems, evolving in accordance with the maximum entropy production principle is defined.

Author Biography

Николай Иванович Делас, National Aviation University pr. Komarova, 1, Kyiv, 03680

PhD
Department of Control Systems lethal devices

References

  1. Jaynes, E. T.; Levine, R. D., Tribus, M. (Ed.) (1979). Where do we Stand on Maximum Entropy?' in The Maximum Entropy Formalism. Moscow: I. T. Press, Cambridge, 105.
  2. Cigler, G. (1966). Jekstremal'nye principy termodinamiki neobratimyh processov i mehanika sploshnoj sredy. Moscow: Mir, 134.
  3. Prigozhin, I. (1960). Vvedenie v termodinamiku neravnovesnyh processov. Moscow: Izd-vo inostr. lit., 127.
  4. Martjushev, L. M., Seleznev, V. D. (2006). Princip maksimal'nosti proizvodstva jentropii v fizike i smezhnyh oblastjah. Ekaterinburg: GOU VPO UGTU-UPI, 83 .
  5. Martyushev, L., Seleznev, V. (2006). Maximum entropy production principle in physics, chemistry and biology. Physics Reports, 426 (1), 1–45. doi: 10.1016/j.physrep.2005.12.001
  6. Ozawa, H., Ohmura, A., Lorenz, R. D., Pujol, T. (2003). The second law of thermodynamicsand the global climate system: A review of the maximum entropy production principle. Reviews of Geophysics, 41 (4), 1–24. doi: 10.1029/2002rg000113
  7. Kleidon, A., Lorenz, R. D. (Eds.) (2005). Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth and Beyond, Springer Verlag, Heidelberg principle. Reviews of Geophysics, 41, 1018–1041.
  8. Dewar, R. C. (2005). Maximum entropy production and the fluctuation theorem. Journal of Physics A: Mathematical and General, 38 (21), L371–L381. doi: 10.1088/0305-4470/38/21/l01
  9. Niven, R. K. (2009). Steady state of a dissipative flow–controlled system and the maximum entropy production principle. Physical Review E, 80 (2), 021113. doi: 10.1103/physreve.80.021113
  10. Groot, S., Mazur, P. (1964). Neravnovesnaja termodinamіka. Moscow: Mir, 456.
  11. Delas, N. I., Kas'janov, V. A. (2012). Extremely hyperbolic law of self-organized distribution systems. Eastern-European Journal of Enterprise Technologies, 4/4(58), 13–18. Available at: http://journals.uran.ua/eejet/article/view/4901/4543
  12. Delas, N. I. (2013). Evolution of complex systems with hyperbolic distribution. Eastern-European Journal of Enterprise Technologies, 3/4 (63), 67–73. Available at: http://journals.uran.ua/eejet/article/view/14769/12571
  13. Levich, V. G. (1969). Kurs teoreticheskoj fiziki. Vol. 1. Moscow: «Nauka», 912.
  14. Jendrjus, G. (1982). Teorija razbienij. Moscow: Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, 256.
  15. Ventcel', E. S. (1969). Teorija verojatnostej. Moscow: Nauka. Glavnaja redakcija fiziko-matematicheskoj literatury, 576.
  16. Kas'janov, V. A. (2007). Sub’ektivnyj analiz. Kiev: NAU, 512.

Published

2014-12-22

How to Cite

Делас, Н. И. (2014). The maximum entropy production principle in the evolution of the macrosystems: some new results. Eastern-European Journal of Enterprise Technologies, 6(4(72), 16–23. https://doi.org/10.15587/1729-4061.2014.31345

Issue

Section

Mathematics and Cybernetics - applied aspects