Advancing real-time echocardiographic diagnosis with a hybrid deep learning model

Authors

DOI:

https://doi.org/10.15587/1729-4061.2024.314845

Keywords:

deep learning, machine learning, CNN, YOLOv7, SegFormer, transformer-based models

Abstract

This research focuses on developing a novel hybrid deep learning architecture designed for real-time analysis of ultrasound heart images. The object of the study is the diagnostic accuracy and efficiency in detecting heart pathologies such as atrial septal defect (ASD) and aortic stenosis (AS) from ultrasound data.

The problem is the insufficient accuracy and generalizability of existing models in real-time cardiac image analysis, which limits their practical clinical application. To solve this, the convolutional neural networks (CNNs), combining local feature extraction was integrated with global contextual understanding of cardiac structures. Additionally, a YOLOv7 for precise segmentation and detection was utilized.

The results demonstrate that the hybrid model achieves an overall diagnostic accuracy of 92 % for ASD detection and 90 % for AS detection, representing a 7 % improvement over the standard YOLOv7 model. These improvements are attributed to the hybrid architecture's ability to simultaneously capture fine-grained anatomical details and broader structural relationships, enhancing the detection of subtle cardiac anomalies.

The findings suggest that combination of CNNs enhances pattern recognition and contextual analysis, leading to better detection of cardiac anomalies. The key features contributing to solving the problem include the hybrid architecture's ability to capture detailed local features and broader structural context simultaneously.

In practical terms, the model can be applied in clinical settings that require real-time cardiac assessment using standard medical imaging equipment. Its computational efficiency and high accuracy make it suitable even in resource-constrained environments, reducing analysis time for clinicians, supporting personalized treatment plans, and potentially improving patient outcomes in cardiology

Author Biographies

Aigerim Bolshibayeva, International IT University

PhD, Assistant Professor

Department of Information Systems

Sabina Rakhmetulayeva, Satbayev University

PhD, Professor

Department of Cybersecurity, Information Processing and Storage

Baubek Ukibassov, Narxoz University

School of Digital Technologies

Zhandos Zhanabekov, Kazakh-British Technical University

MSc, Senior Lecturer

School of Informational Technologies and Engineering

References

  1. Cardiovascular diseases (CVDs) (2021). World Health Organization. Available at: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. Nagueh, S. F., Smiseth, O. A., Appleton, C. P., Byrd, B. F., Dokainish, H., Edvardsen, T. et al. (2016). Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging, 17 (12), 1321–1360. https://doi.org/10.1093/ehjci/jew082
  3. Zhou, J., Du, M., Chang, S., Chen, Z. (2021). Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovascular Ultrasound, 19 (1). https://doi.org/10.1186/s12947-021-00261-2
  4. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M. et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88. https://doi.org/10.1016/j.media.2017.07.005
  5. Shen, D., Wu, G., Suk, H.-I. (2017). Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19 (1), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442
  6. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y. M. (2023). YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7464–7475. https://doi.org/10.1109/cvpr52729.2023.00721
  7. Ho, J., Jain, A., Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840–6851.
  8. Zhang, J., Gajjala, S., Agrawal, P., Tison, G. H., Hallock, L. A., Beussink-Nelson, L. et al. (2018). Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation, 138 (16), 1623–1635. https://doi.org/10.1161/circulationaha.118.034338
  9. Ouyang, D., He, B., Ghorbani, A., Yuan, N., Ebinger, J., Langlotz, C. P. et al. (2020). Video-based AI for beat-to-beat assessment of cardiac function. Nature, 580 (7802), 252–256. https://doi.org/10.1038/s41586-020-2145-8
  10. Leclerc, S., Smistad, E., Pedrosa, J., Ostvik, A., Cervenansky, F., Espinosa, F. et al. (2019). Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography. IEEE Transactions on Medical Imaging, 38 (9), 2198–2210. https://doi.org/10.1109/tmi.2019.2900516
  11. Lang, R. M., Badano, L. P., Mor-Avi, V., Afilalo, J., Armstrong, A., Ernande, L. et al. (2015). Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography, 28 (1), 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003
  12. Knackstedt, C., Bekkers, S. C. A. M., Schummers, G., Schreckenberg, M., Muraru, D., Badano, L. P. et al. (2015). Fully Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and Longitudinal Strain. Journal of the American College of Cardiology, 66 (13), 1456–1466. https://doi.org/10.1016/j.jacc.2015.07.052
  13. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R. (2018). Fast and accurate view classification of echocardiograms using deep learning. Npj Digital Medicine, 1 (1). https://doi.org/10.1038/s41746-017-0013-1
  14. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
  15. Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K. et al. (2018). Attention U-Net: Learning where to look for the pancreas. arXiv. https://doi.org/10.48550/arXiv.1804.03999
  16. Wang, K., Wang, S., Xiong, M., Wang, C., Wang, H. (2021). Non-invasive Assessment of Hepatic Venous Pressure Gradient (HVPG) Based on MR Flow Imaging and Computational Fluid Dynamics. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 33–42. https://doi.org/10.1007/978-3-030-87234-2_4
  17. Mudeng, V., Nisa, W., Sukmananda Suprapto, S. (2022). Computational image reconstruction for multi-frequency diffuse optical tomography. Journal of King Saud University - Computer and Information Sciences, 34 (6), 3527–3538. https://doi.org/10.1016/j.jksuci.2020.12.015
  18. Nurmaini, S., Sapitri, A. I., Tutuko, B., Rachmatullah, M. N., Rini, D. P., Darmawahyuni, A. et al. (2023). Automatic echocardiographic anomalies interpretation using a stacked residual-dense network model. BMC Bioinformatics, 24 (1). https://doi.org/10.1186/s12859-023-05493-9
  19. Iriani Sapitri, A., Nurmaini, S., Naufal Rachmatullah, M., Tutuko, B., Darmawahyuni, A., Firdaus, F. et al. (2023). Deep learning-based real time detection for cardiac objects with fetal ultrasound video. Informatics in Medicine Unlocked, 36, 101150. https://doi.org/10.1016/j.imu.2022.101150
  20. Sutarno, S., Nurmaini, S., Partan, R. U., Sapitri, A. I., Tutuko, B., Naufal Rachmatullah, M. et al. (2022). FetalNet: Low-light fetal echocardiography enhancement and dense convolutional network classifier for improving heart defect prediction. Informatics in Medicine Unlocked, 35, 101136. https://doi.org/10.1016/j.imu.2022.101136
  21. Saxena, A., Singh, S. P., Gaidhane, V. H. (2022). A deep learning approach for the detection of COVID-19 from chest X-ray images using convolutional neural networks. Advances in Machine Learning & Artificial Intelligence, 3 (2), 52–65. https://doi.org/10.33140/amlai.03.02.01
  22. Zhou, Q., Sun, Z., Wang, L., Kang, B., Zhang, S., Wu, X. (2023). Mixture lightweight transformer for scene understanding. Computers and Electrical Engineering, 108, 108698. https://doi.org/10.1016/j.compeleceng.2023.108698
  23. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., Luo, P. (2021). SegFormer: Simple and efficient design for semantic segmentation with transformers. arXiv. https://doi.org/10.48550/arXiv.2105.15203
  24. Rakhmetulayeva, S. B., Bolshibayeva, A. K., Mukasheva, A. K., Ukibassov, B. M., Zhanabekov, Zh. O., Diaz, D. (2023). Machine learning methods and algorithms for predicting congenital heart pathologies. 2023 IEEE 17th International Conference on Application of Information and Communication Technologies (AICT). https://doi.org/10.1109/aict59525.2023.10313184
  25. Ukibassov, B. M., Rakhmetulayeva, S. B., Zhanabekov, Zh. O., Bolshibayeva, A. K., Yasar, A.-U.-H. (2024). Implementation of Anatomy Constrained Contrastive Learning for Heart Chamber Segmentation. Procedia Computer Science, 238, 536–543. https://doi.org/10.1016/j.procs.2024.06.057
  26. Rakhmetulayeva, S., Syrymbet, Z. (2022). Implementation of convolutional neural network for predicting glaucoma from fundus images. Eastern-European Journal of Enterprise Technologies, 6 (2 (120)), 70–77. https://doi.org/10.15587/1729-4061.2022.269229
  27. He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.90
  28. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z. et al. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9992–10002. https://doi.org/10.1109/iccv48922.2021.00986
  29. Ren, S., He, K., Girshick, R., Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (6), 1137–1149. https://doi.org/10.1109/tpami.2016.2577031
  30. LLiu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. Computer Vision – ECCV 2016, 21–37. https://doi.org/10.1007/978-3-319-46448-0_2
  31. Ba, J. L., Kiros, J. R., Hinton, G. E. (2016). Layer normalization. arXiv. https://doi.org/10.48550/arXiv.1607.06450
  32. Loshchilov, I., Hutter, F. (2019). Decoupled weight decay regularization. arXiv. https://doi.org/10.48550/arXiv.1711.05101

Downloads

Published

2024-11-14

How to Cite

Bolshibayeva, A., Rakhmetulayeva, S., Ukibassov, B., & Zhanabekov, Z. (2024). Advancing real-time echocardiographic diagnosis with a hybrid deep learning model. Eastern-European Journal of Enterprise Technologies. https://doi.org/10.15587/1729-4061.2024.314845

Issue

Section

Information and controlling system