Improving the mobile structure of a vertical modular solar dryer for the agricultural sector "From field to fork"

Authors

DOI:

https://doi.org/10.15587/1729-4061.2025.323607

Keywords:

solar dryer, mobility, agricultural raw materials, hemispherical collectors, thermal accumulator, autonomous fans, competitiveness, export potential

Abstract

The object of this study is the radiation drying of local agricultural raw materials (Jerusalem artichoke of the "Kyivskyi bily" variety and apples of the "Williams" variety) in a mobile structure of a vertical-modular solar dryer. The study is aimed at improving the resource-saving drying of agricultural raw materials. The solar dryer has adjustable hemispherical air collectors (tilt angle 20…45°) and a heat-insulated chamber with a thermal accumulator (stone pebbles, size 50–80 mm), a backup infrared heater (600 W), and autonomous fans in a combination with Peltier elements. Drying of agricultural raw materials with a thickness of 4–12 mm and a heat carrier speed of 0.05–2.0 m/s was carried out in the summer-autumn decades of 2024. The drying duration of Jerusalem artichoke was 38.6–50 h, apples – 30.5…37 h; drying temperature – 22…50 °C. Moisture removal was 77.8 % for Jerusalem artichoke and 87.0 % for apples. Moisture removal when loading 6.0 kg of raw materials was 3.5 kg for Jerusalem artichoke (77.8 % moisture) and 4.2 kg for apples (87.0 % moisture) under drying conditions to a moisture content of 20.0 %. Losses of vitamin C during sun drying in Jerusalem artichoke were 2.17 times (versus 3.21 times during convective drying), and in apples – 2.26 times (versus 2.58 times). Dietary fiber in Jerusalem artichoke decreased by 2.29 times (versus 3.33 times), and in apples – by 2.25 times (versus 3.91 times). Losses of β-carotene in Jerusalem artichoke during sun drying were 2.65 times (versus 3.08 times). There was also a smaller decrease in phosphorus and mono- and disaccharides. Dried semi-finished products had a uniform appearance, light yellow color, and natural taste and aroma properties. An improved mechanism for managing the competitiveness of agricultural enterprises combines technical, economic, and organizational aspects for entering the European market and expanding exports

Author Biographies

Andrii Zahorulko, State Biotechnological University

PhD, Associate Professor

Department of Equipment and Engineering of Processing and Food Production

Iryna Voronenko, National University of Life and Environmental Sciences of Ukraine

Doctor of Economical Sciences, Senior Researcher

Department of Information Systems and Technologies

Sofiia Minenko, State Biotechnological University

PhD, Senior Lecturer

Department of Management, Business and Administration

Andrii Pugach, Dnipro State Agrarian and Economic University

Doctor of Public Administration Sciences, Professor, Dean

Olena Nazarenko, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Philology

Olesya Lebedenko, Dnipro State Agrarian and Economic University

PhD, Associate Professor

Department of Management, Public Management and Administration

Eldar Ibaiev, Kharkiv State University of Food Technology and Trade

PhD Student

Department of Processes and Equipment Food and Hospitality-Restaurant Industry named after M. Belaev

Nataliia Tytarenko, State Biotechnological University

Department of Equipment and Engineering of Processing and Food Production

References

  1. Farm to Fork strategy. European Commission. Available at: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
  2. Mamchur, V., Studinska, G. (2023). Innovative development of the agrarian sphere under the conditions of the implementation of the national system of sustainability. Economy and Society, 56. https://doi.org/10.32782/2524-0072/2023-56-144
  3. Savchuk, Ye. V. (2019). Perspektyvy rozvytku soniachnoiy enerhetyky Ukraiyny. World Science, 3 (6 (46)), 42–44. https://doi.org/10.31435/rsglobal_ws/30062019/6575
  4. Abdul Razak, A., Tarminzi, M. A. S. M., Azmi, M. A. A., Ming, Y. H., Akramin, M., Mokhtar, N. (2021). Recent advances in solar drying system: A Review. International Journal of Engineering Technology and Sciences, 8 (1), 1–13. https://doi.org/10.15282/ijets.8.1.2021.1001
  5. Klymenko, N., Voronenko, I., Nehrey, M., Rogoza, K., Rogoza, N. (2023). Risk assessment of shock periods and investment attractiveness of agroholdings of Ukraine. Agricultural and Resource Economics: International Scientific E-Journal, 9 (2). https://doi.org/10.51599/are.2023.09.02.07
  6. Zahorulko, A., Zagorulko, A., Minenko, S., Bozhydai, I. (2024). Scientific and practical justification of innovative approaches to production of multicomponent semi-finished products for food products in the conditions of food security of the country. Food Production: Innovative Technological Solutions. Kharkiv: TECHNOLOGY CENTER PC, 64–91. Available at: http://monograph.com.ua/pctc/catalog/book/978-617-7319-99-2.ch3
  7. Kherrafi, M. A., Benseddik, A., Saim, R., Bouregueba, A., Badji, A., Nettari, C., Hasrane, I. (2024). Advancements in solar drying technologies: Design variations, hybrid systems, storage materials and numerical analysis: A review. Solar Energy, 270, 112383. https://doi.org/10.1016/j.solener.2024.112383
  8. Sharma, A., Chen, C. R., Vu Lan, N. (2009). Solar-energy drying systems: A review. Renewable and Sustainable Energy Reviews, 13 (6-7), 1185–1210. https://doi.org/10.1016/j.rser.2008.08.015
  9. Koshta, V., Patel, H., Mudgil, D. (2021). CHAPTER 17 Solar Energy in Food Processing. Available at: https://www.researchgate.net/publication/348590762_CHAPTER_17_Solar_Energy_in_Food_Processing
  10. Pandey, S., Kumar, A., Sharma, A. (2024). Sustainable solar drying: Recent advances in materials, innovative designs, mathematical modeling, and energy storage solutions. Energy, 308, 132725. https://doi.org/10.1016/j.energy.2024.132725
  11. Anderson, C. B., Picotti, G., Schmidt, T., Cholette, M. E., Bern, G., Steinberg, T. A., Manzolini, G. (2024). The impact of condensation on solar collector soiling: An experimental study. Solar Energy Materials and Solar Cells, 275, 112998. https://doi.org/10.1016/j.solmat.2024.112998
  12. Ikrang, E. G., Whyte, A. A., Maurice, A. M., Akubuo, C. O., Onwude, D. I. (2017). Design and fabrication of a direct passive solar dryer for tilapia fish filets. Acta Horticulturae, 1152, 63–70. https://doi.org/10.17660/actahortic.2017.1152.9
  13. Tuncer, A. D., Amini, A., Khanlari, A. (2023). Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint. Solar Energy, 263, 111958. https://doi.org/10.1016/j.solener.2023.111958
  14. Heydari, A. (2022). Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis. Renewable Energy, 198, 1162–1175. https://doi.org/10.1016/j.renene.2022.08.110
  15. Chanda, P. R., Podder, B., Biswas, A., Sengupta, A. R. (2023). Advancements in solar assisted drying technologies: A comprehensive review post 2017. Journal of Stored Products Research, 104, 102190. https://doi.org/10.1016/j.jspr.2023.102190
  16. Shekata, G. D., Tibba, G. S., Baheta, A. T. (2024). Recent advancements in indirect solar dryer performance and the associated thermal energy storage. Results in Engineering, 24, 102877. https://doi.org/10.1016/j.rineng.2024.102877
  17. Hadibi, T., Boubekri, A., Mennouche, D., Benhamza, A., Kumar, A., Bensaci, C., Xiao, H.-W. (2022). Effect of ventilated solar-geothermal drying on 3E (exergy, energy, and economic analysis), and quality attributes of tomato paste. Energy, 243, 122764. https://doi.org/10.1016/j.energy.2021.122764
  18. Rahman, M. A., Hasnain, S. M. M., Paramasivam, P., Zairov, R., Ayanie, A. G. (2025). Solar Drying for Domestic and Industrial Applications: A Comprehensive Review of Innovations and Efficiency Enhancements. Global Challenges, 9 (2). https://doi.org/10.1002/gch2.202400301
  19. Villagran, E., Espitia, J. J., Velázquez, F. A., Rodriguez, J. (2024). Solar Dryers: Technical Insights and Bibliometric Trends in Energy Technologies. AgriEngineering, 6 (4), 4041–4063. https://doi.org/10.3390/agriengineering6040228
  20. Kolosok, S., Lyeonov, S., Voronenko, I., Goncharenko, O., Maksymova, J., Chumak, O. (2022). Sustainable Business Models and IT Innovation: The Case of the REMIT. Journal of Information Technology Management, 14, 147–156. https://doi.org/10.22059/jitm.2022.88894
  21. Olokor, J., Oghenekaro, Omojowo, F., Samuel (2009). Adaptation And Improvement Of A Simple Solar Tent Dryer To Enhance Fish Drying. Nature and Science of Sleep, 7 (10). Available at: https://www.researchgate.net/publication/274370310_Adaptation_And_Improvement_Of_A_Simple_Solar_Tent_Dryer_To_Enhance_Fish_Drying
  22. EL-Mesery, H. S., EL-Seesy, A. I., Hu, Z., Li, Y. (2022). Recent developments in solar drying technology of food and agricultural products: A review. Renewable and Sustainable Energy Reviews, 157, 112070. https://doi.org/10.1016/j.rser.2021.112070
  23. Kafetzis, A., Ziogou, C., Panopoulos, K. D., Papadopoulou, S., Seferlis, P., Voutetakis, S. (2020). Energy management strategies based on hybrid automata for islanded microgrids with renewable sources, batteries and hydrogen. Renewable and Sustainable Energy Reviews, 134, 110118. https://doi.org/10.1016/j.rser.2020.110118
  24. Zahorulko, A., Zagorulko, A., Mykhailov, V., Ibaiev, E. (2021). Improved rotary film evaporator for concentrating organic fruit and berry puree. Eastern-European Journal of Enterprise Technologies, 4 (11 (112)), 92–98. https://doi.org/10.15587/1729-4061.2021.237948
  25. Minenko, S., Cherevko, O., Skrynnik, V., Tesliuk, H., Bondar, M., Skoromna, O. et al. (2023). Improvement of the vacuum evaporator for the production of paste-like semi-finished products with a high degree of readiness. Eastern-European Journal of Enterprise Technologies, 5 (11 (125)), 76–83. https://doi.org/10.15587/1729-4061.2023.288896
  26. Zahorulko, A., Cherevko, O., Zagorulko, A., Yancheva, M., Budnyk, N., Nakonechna, Y. et al. (2021). Design of an apparatus for low-temperature processing of meat delicacies. Eastern-European Journal of Enterprise Technologies, 5 (11 (113)), 6–12. https://doi.org/10.15587/1729-4061.2021.240675
  27. Zahorulko, A., Zagorulko, A., Savytska, N., Minenko, S., Pugach, A., Ponomarenko, N. et al. (2023). Design of a universal apparatus for heat treatment of meat and vegetable cooked and smoked products with the addition of dried semi-finished products of a high degree of readiness to the recipe. Eastern-European Journal of Enterprise Technologies, 4 (11 (124)), 73–82. LOCKSS. https://doi.org/10.15587/1729-4061.2023.285406
  28. Slobodniuk, R. Ye., Horalchuk, A. B. (2018). Analitychna khimiya ta analiz kharchovoi produktsiyi. Kyiv: VD «Kondor», 336.
  29. Ladyka, V. I., Shylman, L. Z., Pertsevoi, F. V. et al. (2021). Metodolohiya naukovykh doslidzhen. Kherson: OLDI-PLIuS, 222. Available at: https://repo.btu.kharkov.ua/bitstream/123456789/8269/1/NP_Metodolohiya_21.pdf
  30. Zahorulko, A. M., Zahorulko, O. Ye. (2021). Pat. No. 149981 UA. Plivkopodibnyi rezystyvnyi elektronahrivach vyprominiuiuchoho typu. No. u202102839; declareted: 28. 05.2021; published: 23.12.2021.
Improving the mobile structure of a vertical modular solar dryer for the agricultural sector "From field to fork"

Downloads

Published

2025-02-28

How to Cite

Zahorulko, A., Voronenko, I., Minenko, S., Pugach, A., Nazarenko, O., Lebedenko, O., Ibaiev, E., & Tytarenko, N. (2025). Improving the mobile structure of a vertical modular solar dryer for the agricultural sector "From field to fork". Eastern-European Journal of Enterprise Technologies, 1(11 (133), 6–16. https://doi.org/10.15587/1729-4061.2025.323607

Issue

Section

Technology and Equipment of Food Production