Fractal image compression method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2014.33445

Keywords:

image compression, fractal algorithm, iterated function systems, affine transformations

Abstract

The fractal image compression method is investigated. Among various coding methods, it allows to get the highest compression ratios. The mathematical model is considered, and classical algorithm of image coding-decoding using the fractal method is presented. Its essence lies in searching self-similar image parts based on compression parameters. Since the coding process using this method requires significant computational cost, its speed is low. It should be noted that image decoding does not need large capacity and resources of the operating system. Low compression speed is caused by the fact that high quality of the output image requires handling a large number of domain areas. So, studies on searching criteria that allow to select a suitable domain area that after affine transformations most closely approximates the rank region are relevant.

A brief analysis of methods for optimizing and improving the speed of building iterated function systems of fractal image coding, their efficiency and practical application possibility is performed.

Author Biography

Роман Анатолійович Зубко, Open International University of Human Development "Ukraine" str. Lviv, 23, Kyiv, Ukraine, 03115

Lecturer

Department of Information Technology and Programming

References

  1. Mjurrej, D., van Rajper, U. (1997). Jenciklopedija formatov graficheskih fajlov. Kiev: Izdatel'skaja gruppa VNV, 672.
  2. Benua, B. (2002). Mandel'brot. Fraktal'naja geometrija prirody. Moscow: Institut komp'juternyh issledovanij, 666.
  3. Vatolin, D., Ratushnjak, A., Smirnov, M., Jukin, V. (2002). Metody szhatija dannyh. Moscow: Dialog-MIFI, 381.
  4. Barnsli, M., Anson, L. (1992). Fraktal'noe szhatie izobrazhenij. Mir PK, 10, 52–58.
  5. Krasil'nikov, N. N. (2011). Cifrovaja obrabotka 2D- i 3D-izobrazhenij:ucheb. posobie. SPb.: BHV-Peterburg, 608.
  6. Vatolin, D. S. (1999). Ispol'zovanie DKP dlja uskorenija fraktal'nogo szhatija izobrazhenij. Programmirovanie, 3, 51–57.
  7. Karpov, P. M. (2006). Bystryj fraktal'nyj algoritm szhatija izobrazhenij, Nauchnaja sessija MIFI, Vol. 15.
  8. Shabarshin, A. A. (1997). Metod fraktal'nogo szhatija izobrazhenij, Nauchnye shkoly UPI-UGTU, 1, 70–82.
  9. Vinokurov, S. V. (2005). Metody povyshenija vremennoj jeffektivnosti algoritmov fraktal'nogo szhatija izobrazhenij. Materialy konferencii «Fundamental'nye i prikladnye problemy priborostroenija, informatiki i jekonomiki», sbornik Informatika, MGAPI, 53–59.
  10. Vinokurov, S. V. (2006). Jeffektivnyj algoritm fraktal'nogo szhatija izobrazhenij s ispol'zovaniem prostranstvenno-chuvstvitel'nogo heshirovanija. Otkrytoe obrazovanie, 4 (57), 62–70.
  11. Osokin, A. N., Sharabajko, M. P. (2010). Issledovanie vozmozhnosti rasparallelivanija processa fraktal'nogo szhatija izobrazhenij. Molodezh' i sovremennye informacionnye tehnologii. Tomsk, 1, Part 2, 212–213.
  12. Majdanjuk, V. P. (2001). Metody i zasoby komp’juternyh informacijnyh tehnologij. Koduvannja zobrazhen'. Navchal'nyj posibnyk. Vinnycja: VDTU, 65.
  13. Krasnov, M. L. (1975). Integral'nye uravnenija: vvedenie v teoriju. Moscow: Nauka, 302.
  14. Huang, T. S.; Huanga, T. S. (Ed.) (1984). Bystrye algoritmy v cifrovoj obrabotke izobrazhenij. Moscow: Radio i svjaz', 224.
  15. Kunt, M., Dzhonson, O. (1980). Blochnoe kodirovanie graficheskih materialov. Obzor. TIIJeR, 68 (7), 21–40.
  16. Majdanjuk, V. P. (1996). Koduvannja zobrazhen' v komp'juternyh systemah. Kiev, 16.

Published

2014-12-17

How to Cite

Зубко, Р. А. (2014). Fractal image compression method. Eastern-European Journal of Enterprise Technologies, 6(2(72), 23–28. https://doi.org/10.15587/1729-4061.2014.33445