Improving a method for determining the coordinates of a reconnaissance unmanned aerial vehicle by a small-based network of two software-defined radio receivers
DOI:
https://doi.org/10.15587/1729-4061.2025.341735Keywords:
unmanned aerial vehicle, small-base network, Software-Defined Radio receiver, bearingAbstract
This study investigates the process for determining the coordinates of a reconnaissance unmanned aerial vehicle. The task addressed relates to determining the coordinates of a reconnaissance unmanned aerial vehicle using a small-scale network of mobile passive location devices.
A method for determining the coordinates of a reconnaissance unmanned aerial vehicle has been improved, which, unlike known ones, involves:
– determining bearings for a reconnaissance unmanned aerial vehicle;
– using the triangulation method.
The accuracy of determining the coordinates of a reconnaissance unmanned aerial vehicle by a small-scale network of two Software-Defined Radio receivers has been assessed. It has been established that the shape and orientation of the error ellipses depends on the position of the reconnaissance unmanned aerial vehicle relative to the Software-Defined Radio receivers. The accuracy of determining the coordinates significantly deteriorates in cases where the polar angle of observation from the center of the base approaches 0° or 180°. The highest accuracy of determining coordinates is achieved when the reconnaissance unmanned aerial vehicle is located on the traverse to the middle of the base.
It has been established that for small bases there is a more pronounced unevenness of the dependence of accuracy on the position of the reconnaissance unmanned aerial vehicle compared to larger bases. At long ranges, errors for small bases increase sharply. It has been established that with a decrease in the base length, the area of the error ellipses increases, which indicates a deterioration in the potential accuracy characteristics of the system and an increase in the average circular error. At the same time, the geometric features are preserved, the orientation of the ellipses and the nature of their location relative to the base line remain constant
References
- Goldstein, L., Waechter, N. (2023). Chinese Strategists Evaluate the Use of 'Kamikaze' Drones in the Russia-Ukraine War. Rand. Available at: https://www.rand.org/pubs/commentary/2023/11/chinese-strategists-evaluate-the-use-ofkamikaze-drones.html
- Grigore, L., Cristescu, C. (2024). The Use of Drones in Tactical Military Operations in the Integrated and Cybernetic Battlefield. Land Forces Academy Review, 29 (2), 269–273. https://doi.org/10.2478/raft-2024-0029
- Riabukha, V. P. (2020). Radar Surveillance of Unmanned Aerial Vehicles (Review). Radioelectronics and Communications Systems, 63 (11), 561–573. https://doi.org/10.3103/s0735272720110011
- Hrudka, O. (2024). Russian drone manufacturer ‘Orlan-10’ ramps up production despite sanctions, Inform Napalm reports. Available at: https://euromaidanpress.com/2024/01/13/russian-drone-manufacturer-orlan-10-ramps-up-production-despite-sanctions-inform-napalm-reports/
- British intelligence: Russian radar destroyed in missile attack on Belbek in Crimea (2024). Available at: https://mind.ua/en/news/20269399-british-intelligence-russian-radar-destroyed-in-missile-attack-on-belbek-in-crimea
- Khudov, H., Makoveichuk, O., Kostyria, O., Butko, I., Poliakov, A., Kozhushko, Y. et al. (2024). Devising a method for determining the coordinates of an unmanned aerial vechicle via a network of portable spectrum analyzers. Eastern-European Journal of Enterprise Technologies, 6 (9 (132)), 97–107. https://doi.org/10.15587/1729-4061.2024.318551
- Khudov, H., Kostianets, O., Kovalenko, O., Maslenko, O., Solomonenko, Y. (2023). Using Software-Defined radio receivers for determining the coordinates of low-visible aerial objects. Eastern-European Journal of Enterprise Technologies, 4 (9 (124)), 61–73. https://doi.org/10.15587/1729-4061.2023.286466
- Boussel, P. (2024). The Golden Age of Drones: Military UAV Strategic Issues and Tactical Developments. Available at: https://trendsresearch.org/insight/the-golden-age-of-drones-military-uav-strategic-issues-and-tactical-developments/?srsltid=AfmBOoptC41niCzbAJGHOTcUhRGJpWEW_y7hHLkJ_5hkabW_fIBS5sZ
- Melvin, W. L., Scheer, J. (2012). Principles of Modern Radar: Advanced techniques. The Institution of Engineering and Technology. https://doi.org/10.1049/sbra020e
- Melvin, W. L., Scheer, J. A. (2013). Principles of Modern Radar: Volume 3: Radar Applications. The Institution of Engineering and Technology. https://doi.org/10.1049/sbra503e
- Lishchenko, V., Kalimulin, T., Khizhnyak, I., Khudov, H. (2018). The Method of the organization Coordinated Work for Air Surveillance in MIMO Radar. 2018 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo), 1–4. https://doi.org/10.1109/ukrmico43733.2018.9047560
- Neyt, X., Raout, J., Kubica, M., Kubica, V., Roques, S., Acheroy, M., Verly, J. G. (2006). Feasibility of STAP for Passive GSM-Based Radar. 2006 IEEE Conference on Radar, 546–551. https://doi.org/10.1109/radar.2006.1631853
- Willis, N. J. (2004). Bistatic Radar. The Institution of Engineering and Technology. https://doi.org/10.1049/sbra003e
- Semenov, S., Jian, Y., Jiang, H., Chernykh, O., Binkovska, A. (2025). Mathematical model of intelligent UAV flight path planning. Advanced Information Systems, 9 (1), 49–61. https://doi.org/10.20998/2522-9052.2025.1.06
- Ruban, I., Khudov, H., Lishchenko, V., Pukhovyi, O., Popov, S., Kolos, R. et al. (2020). Assessing the detection zones of radar stations with the additional use of radiation from external sources. Eastern-European Journal of Enterprise Technologies, 6 (9 (108)), 6–17. https://doi.org/10.15587/1729-4061.2020.216118
- Multilateration (MLAT). Concept of Use. Available at: https://www2023.icao.int/APAC/Documents/edocs/mlat_concept.pdf
- Luo, D., Wen, G. (2024). Distributed Phased Multiple-Input Multiple-Output Radars for Early Warning: Observation Area Generation. Remote Sensing, 16 (16), 3052. https://doi.org/10.3390/rs16163052
- Kalkan, Y. (2024). 20 Years of MIMO Radar. IEEE Aerospace and Electronic Systems Magazine, 39 (3), 28–35. https://doi.org/10.1109/maes.2023.3349228
- Barabash, O., Kyrianov, A. (2023). Development of control laws of unmanned aerial vehicles for performing group flight at the straight-line horizontal flight stage. Advanced Information Systems, 7 (4), 13–20. https://doi.org/10.20998/2522-9052.2023.4.02
- Khudov, H., Hryzo, A., Oleksenko, O., Repilo, I., Lisohorskyi, B., Poliakov, A. et al. (2025). Devising a method for determining the coordinates of an air object by a network of two SDR receivers. Eastern-European Journal of Enterprise Technologies, 1 (9 (133)), 62–68. https://doi.org/10.15587/1729-4061.2025.323336
- Weber, C., Peter, M., Felhauer, T. (2015). Automatic modulation classification technique for radio monitoring. Electronics Letters, 51 (10), 794–796. https://doi.org/10.1049/el.2015.0610
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Igor Ruban, Hennadii Khudov, Yelyzaveta Biernik, Oleksandr Makoveichuk, Volodymyr Maliuha, Serhii Yarovyi, Rostyslav Khudov, Vladyslav Khudov, Leonid Poberezhnyi, Olena Goncharenko

This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.





