Design of tracking invariant systems based on the equivalent robust control

Authors

  • Газанфар Арастун оглы Рустамов Azerbaijan Technical University pr. H. Javid, 25, Baku, Azerbaijan, Az1073, Azerbaijan

DOI:

https://doi.org/10.15587/1729-4061.2015.37177

Keywords:

control system, invariant system, uncertainty, Lyapunov function, robust controller, perturbation

Abstract

An approach to designing invariant, with respect to external disturbances, control systems is proposed. Unlike the classical scheme, it does not require perturbation measuring. The possibility of unlimited increase in the robust controller gain without stability loss allows to reduce the effect of perturbations to an arbitrarily small value. This ensures high tracking accuracy of the reference trajectory and speed for a wide class of perturbations. In the limit, the system is described by the equation of the hyperplane. This feature allows to define the robust controller settings using the methods of linear control theory, in particular, the method of "modal control". The disadvantages of the method include using derivatives of the output to generate the PD-controller and strengthening high-frequency noise with direct access to the controller. The effectiveness of the proposed method is confirmed by solving the model problem on Matlab/Simulink.

Author Biography

Газанфар Арастун оглы Рустамов, Azerbaijan Technical University pr. H. Javid, 25, Baku, Azerbaijan, Az1073

Doctor of Technical Sciences, Professor

Department of "Automation and Control"

References

  1. Krasovskii, A. A. (1987). Spravochnik po teorii avtomaticheskogo upravlenija. Moscow: Nauka, 712.
  2. Egupova, N. D. (2000). Sintez reguljatorov i teorija optimizacii sistem avtomaticheskogo upravlenija. Moscow: Iz–vo MGTU, 736.
  3. Besekerskij, V. A., Popov, E. P. (2003). Teorija sistem avtomaticheskogo upravlenija. Moscow: Nauka, 752.
  4. Korikov, A. M. (2002). Osnovy teorii upravlenija. Tomsk: Izd-vo NTL, 392.
  5. Rustamov, G. A. (2012). Teorija avtomaticheskogo regulirovanija: modelirovanie v Matlab/Simulink. Baku: Iz–vo AzTU, 752.
  6. Dorf, R. K., Bishop, R. H., Gudvin, G. K., Grebe, S. F., Sal'gado, M. Je. (2004). Laboratorija znanij. Moscow: BINOM, 911.
  7. Shhipanov, G. V. (1939). Teorija i metody proektirovanija reguljatorov. Avtomatika i telemehanika, 1, 49–66.
  8. Petrov, B. N. (1955). O primenimosti uslovij invariantnosti. Trudy Vsesojuznogo soveshhanija po teorii avtomaticheskogo regulirovanija, 2, 241–246.
  9. Petrov, B. N. (1959). O realizuemosti uslovij invariantnosti. Teorija invariantnosti i ejo primenenie v avtomaticheskih ustrojstvah. Moscow: Izd-vo AN SSSR, 59–80.
  10. Petrov, B. N. (1961). Invariance principle and its application conditions in designing of linear nonlinear systems. Proc. of the 1 International Congress of IFAC, AN SSSR, 259–271 [in Russian].
  11. Kulebakin, V. S. (1959). High quality invariant control systems. In the book «Theory of invariance and its application in automatic devices». Moscow: Publ.AN SSSR, 11–39 [in Russian].
  12. Menskij, B. M. (1972). Princip invariantnosti v avtomaticheskom regulirovanii i upravlenii. Moscow: Mashinostroenie, 248.
  13. Meerov, M. V. (1947). Sistemy avtomaticheskogo upravlenija, ustojchivye pri beskonechno bol'shih kojefficientah usilenija // Avtomatika i telemehanika, 8 (4), 225–243.
  14. Meerov, M. V. (1967). Sintez struktur sistem avtomaticheskogo upravlenija vysokoj tochnosti. Moscow: Nauka, 423.
  15. Bejnarovich, V. A. (2010). Invariantnye sistemy avtomaticheskogo upravlenija / Doklady TUSURa, 1 (21), part 1, 70–73.
  16. Mamedov, G. A., Rustamov, G. A., Gasanov, Z. R. (2009). Ustranenie narushenija skol'zjashhego rezhima pri vynuzhdennom dvizhenii upravljaemyh ob’ektov. Avtomatika i vychislitel'naja tehnika, 2, 28–36.
  17. Rustamov, G. A. (2013). Absolutely robust control systems. Automatic Control and Computer Sciences, 47 (5), 227–241. doi: 10.3103/s0146411613050052
  18. Rustamov, G. A. (2014). Robastnaja sistema upravlenija s povyshennym potencialom. Izvestija Tomskogo politehnicheskogo universiteta, 324 (5), 13–19.
  19. Utkin, V. I. (1981). Skol'zjashhie rezhimy v zadachah optimizacii i upravlenija. Moscow: Nauka, 368.
  20. Drazenovic, B. (1969). The invariance conditions in variable structure systems. Automatica, 5 (3), 287–295. doi: 10.1016/0005-1098(69)90071-5
  21. Rustamov, G. A. (2012). Invariant control systems of second order / IV International Conference «Problems of Cybernetics and Informatics. Baku, Azerbaijan, 4, 22–24. Available at: www.pci2012.science.az/7/07.pdf. doi: 10.1109/icpci.2012.6486428

Published

2015-02-27

How to Cite

Рустамов, Г. А. о. (2015). Design of tracking invariant systems based on the equivalent robust control. Eastern-European Journal of Enterprise Technologies, 1(2(73), 50–55. https://doi.org/10.15587/1729-4061.2015.37177