Implementation plasma chemical etching in submicron technology wsi structure

Authors

  • Степан Петрович Новосядлий Carpathian National University. Stefanik Str. Shevchenko, 57, Ivano-Frankivsk, Ukraine, 76025, Ukraine https://orcid.org/0000-0001-7716-2241
  • Любомир Васильович Мельник Carpathian National University. V.Stefanyk Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025, Ukraine https://orcid.org/0000-0002-8348-6864
  • Святослав Володимирович Новосядлий Carpathian National University. V.Stefanyk. Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025, Ukraine https://orcid.org/0000-0001-7716-2241

DOI:

https://doi.org/10.15587/1729-4061.2015.42128

Keywords:

plasma chemical etching, deposition, boron phosphorus silicate glass, photoresist, reactor

Abstract

With the development of a range of sub–micron devices elements inthralnyh large schemes, a number of problems, which either did not exist in the development of technology of integrated circuits with minimum dimensions of elements, or they did not identify significant. Thus reducing the geometric dimensions topology structures LSI, accompanied by a decrease in the thickness of the functional layers of multilayer structures used to represent a theoretical requirements for selectivity and anisotropy etching layers introduced defects and radiation damage to the surface of the processed wafers of silicon or gallium arsenide structures of integrated circuits. To determine the optimal technological regimes digestion ranged basic operating parameters of the process – the composition and working gas pressure, bias voltage and holder, holder distance to the source plasma. This article reveals the same perspective and alternative use of submicron technology of plasma chemical etching.

Author Biographies

Степан Петрович Новосядлий, Carpathian National University. Stefanik Str. Shevchenko, 57, Ivano-Frankivsk, Ukraine, 76025

Doctor of Technical Sciences, Professor

Department of Computer Engineering and Electronics

Любомир Васильович Мельник, Carpathian National University. V.Stefanyk Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025

Graduate student

Department of Computer Engineering and Electronics

Святослав Володимирович Новосядлий, Carpathian National University. V.Stefanyk. Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025

Department of Computer Engineering and Electronics.

References

  1. Novosyadlyy, S. P. (2010). Sub–nanomykron technology structures LSI. Ivano–Frankivsk: City NV, 456.
  2. Novosyadlyy, S. P. (2003). Physical and technological bases submicron VLSI. Ivano–Frankivsk: Simyk, 52–54.
  3. Simon, V. V. Kornilov, L. (1988). Equipment of ion implantation. Moscow: Radio and Communications, 354.
  4. Ryssel, H., Ruge, I. (1983). Ion implantation. Moscow: Science, 360.
  5. Boltaks, B. I., Kolotov, M. N., Skoretyna, E. A. (1983). Deep centers in gallium arsenide tied up with their own structural defects. Physics, 10.
  6. Afanasiev, V. A., Duhvskyy, M., Krasov, G. A. (1984). Equipment for impulse heat treatment of semiconductor materials. Microwave Electronics, 56–58.
  7. Okamoto, T. (1985). Devices of ion implantation. Saymitsu Kikai, 1322–1325.
  8. Cherylov, A. V. (1984). Investigation of electro–physical characteristics of ion–doped layers . Electronic equipment, 8–12.
  9. Di Lorenzo, A. V., Kandeluola, D. D. (1988). Field–effect transistors on gallium arsenide. M: Radio and Communications, 489.
  10. Watanabe, N., Asada, K., Kani, K., Otsuki, T. (1988). VLSI Design. Moscow: Mir, 304.

Published

2015-06-17

How to Cite

Новосядлий, С. П., Мельник, Л. В., & Новосядлий, С. В. (2015). Implementation plasma chemical etching in submicron technology wsi structure. Eastern-European Journal of Enterprise Technologies, 3(5(75), 21–24. https://doi.org/10.15587/1729-4061.2015.42128

Issue

Section

Applied physics