ANALYTIC SOLUTION OF THE WAVE EQUATION OF ELASTICITY THEORY IN THE METAL FORMING

Authors

  • Сергій Петрович Шейко Zaporizhzhya National Technical University Zhukovsky street, 64, Zaporizhzhya, 69063, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2012.4519

Keywords:

metal forming, elasticity theory, dynamic problem, harmonic function.

Abstract

The dynamical problems of the elasticity and plasticity theories occur in the process of metal forming. In the article, an analytical solution of the wave equation of the elasticity was obtained. The differential relations, converting the wave equation into an identity, were obtained, using the product of trigonometric functions with arguments, defined by time and space variables. The conditions of solutions, which are different from the solution, obtained by the method of separation of variables, are described. The arguments of function can be nonlinear dependences from the variables. The restrictions were imposed on the function arguments, suggesting that the latter may have different order, just to satisfy the conditions of solutions. Another peculiarity of the solution is the presence of two simultaneous variables in expressions of arguments. It was shown that between the arguments of trigonometric functions there is a correspondence in differential form. This expands possibilities of the solution, not limiting the argument of function by linear dependence. The suggested solution accommodates well-known solutions, and is considered more general in comparison with the expressions obtained by the method of separation of variables. This allows expanding of the range of dynamic problems for the account of greater variety of boundary and initial conditions.

Author Biography

Сергій Петрович Шейко, Zaporizhzhya National Technical University Zhukovsky street, 64, Zaporizhzhya, 69063

Professor

Department of Metal Forming

References

  1. Норицин, И.А. Проектирование кузнечных и холодноштамповочных цехов и заводов [Текст] / И.А. Норицин. – М.: Высшая школа, 1977. – 422 с.
  2. Пановко, Я.Г. Основы прикладной теории упругих колебаний и удара [Текст] / Я.Г. Пановко. – Л.: Машиностроение, 1976. – 320 с.
  3. Тихонов, А.Н. Уравнения математической физики [Текст] / А.Н. Тихо-нов, А.А. Самарский. – М.: Наука. 1966. – 724 с.
  4. Бабанов И.М. Теория колебаний [Текст] / И.М. Бабанов. – М.: Наука. 1968. – 560 с.
  5. Бронштейн, И.М. Справочник по математике [Текст] / И.М. Брон-штейн, К.Л. Семендяев. – М.: Наука. 1964. – 608 с.
  6. Чигиринский, В.В. Метод решения задач теории пластичности с ис-пользованием гармонических функций [Текст] / В.В. Чигиринский // Изв вузов. Черная металлургия. – 2009. – №5. – С. 11-16.
  7. Чигиринский, В.В. Новый метод решения задач теории пластичности [Текст] / В.В. Чигиринский // Новые материалы и технологии в металлургии и машиностроении. –Запорожье, 2008. – №1. – С. 57-62.
  8. Chygyrynskiy, V.V. The Influence of the Temperature Factor on Deformability of the Plastic Medium [Text] / V.V. Chygyrynskiy, I. Mamuzic, F.Vodopivec, I.V. Gordienko // Metalurgija. – Zagreb, 2006. – Vol.45, br.2. – P.115-118.

Published

2012-10-09

How to Cite

Шейко, С. П. (2012). ANALYTIC SOLUTION OF THE WAVE EQUATION OF ELASTICITY THEORY IN THE METAL FORMING. Eastern-European Journal of Enterprise Technologies, 5(4(59), 12–15. https://doi.org/10.15587/1729-4061.2012.4519

Issue

Section

Mathematics and Cybernetics - applied aspects