Synthesis and sorption properties of composite materials based on nanoscale Fe0

Authors

  • Вікторія Юріївна Тобілко National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-1800-948X
  • Борис Юрійович Корнілович National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-6393-6880

DOI:

https://doi.org/10.15587/1729-4061.2015.46580

Keywords:

composite materials, nanoscale, sorption capacity, cobalt compounds, rheological properties

Abstract

Physico-chemical production features of composite materials based on natural clay minerals and nanoscale  were investigated in the paper. The X-ray phase analysis has shown that the deposition of the finely dispersed iron layer on the surface of layered or layered-band silicates leads to the formation of sorption materials, which contain the crystalline phases α-Fe, FeO and FeOON.

The sorption properties of the synthesized samples with respect to the cobalt compounds were examined. It is shown that the resulting composite materials have a high sorption capacity compared to the initial clay minerals. This is caused by an increase in the number of groups in thin oxide-hydroxide films on the surface of the  nanoparticles.

The studies of rheological properties of dispersions of palygorskite, modified by nanodispersed iron were performed. It was found that at the  content that corresponds to the mineral exchange capacity ratio of 1: 5, the suspension exhibits pseudoplastic nature and is resistant. The possibility of using finely dispersed adsorbent in the groundwater purification from the metal ions with applying modern environmental technologies, which are based on the direct pumping of aqueous dispersions of nanomaterials in the contaminated soil layers through injection wells was shown.

Author Biographies

Вікторія Юріївна Тобілко, National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056

Assistant

Department of chemical technology of ceramics and glass

Борис Юрійович Корнілович, National Technical University of Ukraine «Kyiv Polytechnic Institute» 37 Peremogy ave., Kyiv, Ukraine, 03056

Corresponding Member of NAS Ukraine, professor, Doctor of chemical science, head of the department

Department of chemical technology of ceramics and glass

References

  1. Gnesin, G. G., Skorohod, V. V. (2008). Neorganicheskoe materialovedenie: entsykloped. izd. v 2 t. Kiev: Naukova dumka, 1: Osnovy nauki o materialah, 1152.
  2. Shabanova, N. A., Popov, V. V., Sarkisov, P. D. (2007). Khimiya i tekhnologiya nanodispersnyh oksidov. Moscow: Akademkniga, 309.
  3. Scott, T. B., Popescu, I. C., Crane, R. A., Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of Hazardous Materials, 186 (1), 280–287. doi: 10.1016/j.jhazmat.2010.10.113
  4. Fu, F., Dionysiou, D. D., Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205. doi: 10.1016/j.jhazmat.2013.12.062
  5. Yan, W., Herzing, A. A., Kiely, C. J., Zhang, W. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118 (3-4), 96–104. doi: 10.1016/j.jconhyd.2010.09.003
  6. Cundy, A. B., Hopkinson, L., Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of The Total Environment, 400 (1-3), 42–51. doi: 10.1016/j.scitotenv.2008.07.002
  7. Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. J. Nanoparticle Res., 5, 323–332.
  8. Li, X., Elliott, D. W., Zhang, W. (2006). Zero-Valent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Critical Reviews in Solid State and Materials Sciences, 31 (4), 111–122. doi: 10.1080/10408430601057611
  9. Sun, Y.-P., Li, X.-Q., Zhang, W.-X., Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308 (1-3), 60–66. doi: 10.1016/j.colsurfa.2007.05.029
  10. Allabaksh, M. B., Mandal, B. K., Kesarla, M. K., Kumar, K. S. (2010). Preparation of stable zero valent nanoparticles using different chelating agents. J. Chem. Pharm. Res., 5, 67–74.
  11. Gu, C., Jia, H., Li, H., Teppen, B. J., Boyd, S. A. (2010). Synthesis of Highly Reactive Subnano-Sized Zero-Valent Iron Using Smectite Clay Templates. Environ. Sci. Technol., 44 (11), 4258–4263. doi: 10.1021/es903801r
  12. Shi, L., Zhang, X., Chen, Z. (2011). Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45 (2), 886–892. doi: 10.1016/j.watres.2010.09.025
  13. Interstate Technology & Regulatory Council. Permeable Reactive Barriers: Technology Update. PRB-5 (2011). Washington, D.C., 179.
  14. Kornilovych, B. Yu., Sorokin, О. G., Pavlenko, V. M., Koshyk, Yu. I. (2011). Pryrodookhoronni tekhnologii v uranovydobuvnii ta pererobnii promyslovosti. Kiev, 156.
  15. Shi, L., Lin, Y.-M., Zhang, X., Chen, Z. (2011). Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 171 (2), 612–617. doi: 10.1016/j.cej.2011.04.038
  16. Marchenko, Z. (1971). Fotometricheskoe opredelenie elementov. Мoscow: Мir, 547.
  17. Brindley, G., Brown, G. (1980). Crystal structures of clay minerals and their X-ray indentification. London: Miner. Soc., 496.
  18. Kornilovych, B. Yu., Andrievska, O. R., Plemyannikov, M. M., Spasenova, L. M. (2013). Phizychna khimiya kremnezemu i nanodyspersnyh sylikativ. Kiev: Osvita Ukrainy, 176.

Published

2015-08-22

How to Cite

Тобілко, В. Ю., & Корнілович, Б. Ю. (2015). Synthesis and sorption properties of composite materials based on nanoscale Fe0. Eastern-European Journal of Enterprise Technologies, 4(5(76), 22–27. https://doi.org/10.15587/1729-4061.2015.46580