“Correct entropy”in the analysis of complex systems: what is the consequence of rejecting the postulate of equal a priori probabilities?

Authors

  • Николай Иванович Делас National Aviation University ave. Komarova, 1, Kyiv, 03680, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.47332

Keywords:

entropic divergence, evolution of complex systems, power-law distribution, entropy production, synergetics

Abstract

 

Entropy can clearly reflect the probability of the macrostate of a system only in case of validity of the basic postulate of statistical mechanics—the postulate of equal a priori probabilities of microstates. We have proved that for most non-physical macrosystems it loses its power, and the role of entropy has to be performedby a more general property, which has been found out in this study and called entropic divergence. In accordance with the principle of continuity, it includes the Boltzmann entropy.

The properties of entropic divergence were considered through proving a number of theorems. This property has generally been found to have a minimal effect on the equilibrium state of the system.

The conditional minimum of entropic divergence was disclosed as an example of formalism through which we have derived exponential and marginal hyperbolic distributions that take into account unequal a priori probabilities. The multiplicative form of the combined distribution allows consideration of the process of interaction between two or more macrosystems as the realization of a complex macroexperience.

We have disclosed the possibility of using the research findings for analysing adaptive statistical interaction of aggregate macrosystems. The termsused in the studyfacilitate the development of quantitative methods of such analysis. We have given an example of the possibility of using this approach to compute the exponent in the power-law (hyperbolic) distributions.

Author Biography

Николай Иванович Делас, National Aviation University ave. Komarova, 1, Kyiv, 03680

Candidate of Technical Sciences

Department of control systems of aircraft

References

  1. Jaynes, E. T. (1957). Information Theory and Statistical Mechanics. Physical Review, 106 (4), 620–630. doi: 10.1103/physrev.106.620
  2. Plank, M. (1935). Vvedenie v teoreticheskuiu fiziku. Teoriia. Part 5. Moscow: Nauchno-tehnicheskoe izd-vo NKTP SSSR, 229.
  3. Frenkel', Ya. I. (1948). Statisticheskaia fizika. Moscow: Izd-vo akademii nauk SSSR, 760.
  4. Zommerfel'd, A. (1955). Termodinamika i statisticheskaia fizika. Moscow: Izd-vo inostr. lit., 481.
  5. Kittel', Ch. (1977). Statisticheskaia termodinamika. Moscow: Prosveshchenie, 336.
  6. Yakovenko, V. (2010). Statistical mechanics approach to the probability distribution of money. Department of Physics, University of Maryland, 11.
  7. Galkin, S. A., Elagin, O. I., Kozlov, A. A., Potapenko, V. A., Romanovskii, M. Yu. (2009). Eksponentsial'nye raspredeleniia individual'nyh dohodov i rashodov grazhdan: nabliudeniia i modeli. Trudy instituta obshchei fiziki im. A.M. Prohorova, RAN, 65, 29–49.
  8. Vil'son, A. J. (1978). Entropiinye metody modelirovaniia slozhnyh sistem. Moscow: Nauka, 248.
  9. Levich, A. P., Alekseev, V. L., Nikulin, V. A. (1994). Matematicheskie aspekty variatsionnogo modelirovaniia v ekologii soobshchestv. Matematicheskoe modelirovanie, 6 (5), 55–76.
  10. Prangishvili, I. V. (2003). Entropiinye i drugie sistemnye zakonomernosti: Voprosy upravleniia slozhnymi sistemami. Moscow: Nauka, 428.
  11. In: Prohorov, A. M. (1995). Fizicheskaia entsiklopediia. Vol. 4. Moscow: Sovetskaia entsiklopediia, 640.
  12. Delas, N., Kasianov, V. (2012). Extremely hyperbolic law of self-organized distribution systems. Eastern-European Journal of Enterprise Technologies, 4/4(58), 13–18. Available at: http://journals.uran.ua/eejet/article/view/4901/4543
  13. Delas, N. (2013). Evolution of complex systems with hyperbolic distribution. Eastern-European Journal of Enterprise Technologies, 3/4(63), 67–73. Available at: http://journals.uran.ua/eejet/article/view/14769/12571
  14. Kullback, S., Leibler, R. A. (1951). On Information and Sufficiency. The Annals of Mathematical Statistics, 22 (1), 79–86. doi: 10.1214/aoms/1177729694
  15. Trubnikov, B. A., Trubnikova, O. B. (2004). Piat' velikih raspredelenii veroiatnostei. Priroda, 11, 13–20.
  16. Gorban', I. I. (2014). Fenomen statisticheskoi ustoichivosti. Kiev: Naukova dumka, 444.
  17. Mandel'brot, B. (1973). Teoriia informatsii i psiholingvisticheskaia teoriia chastot slov. Moscow: Progress, 316–337.
  18. Botvina, L. R., Barenblatt, G. I. (1985). Avtomodel'nost' nakopleniia povrezhdaemosti. Problemy prochnosti, 12, 17–24.
  19. Golitsin, G. S., Mohov, I. I., Akperov, M. G., Bardin, M. Yu. (2007). Funktsii raspredeleniia veroiatnostei dlia tsiklonov i antitsiklonov. Doklady RAN, 413 (2), 254–256.
  20. Andersen, K. (2008). Dlinnyi hvost. Novaia model' vedeniia biznesa. Translated from English. Moscow: Vershina, 272.
  21. Haibullov, R. A. (2009). Rangovyi analiz kosmicheskih sistem. Izvestiia glavnoi astronomicheskoi observatorii v Pulkove, 3 (219), 95–104.
  22. Orlov, Yu. K. (1980). Nevidimaia garmoniia. Chislo i misl', 3, 70–105.
  23. Gelashvili, D. B., Yudin, D. I., Rozenberg, G. S., Yakimov, V. N. (2007). Stepennoi harakter nakopleniia vidovogo bogatstva kak proiavlenie fraktal'noi struktury biotsenoza. Zhurnal obshchei biologii, 68 (2), 115–124.
  24. Delas, N., Kasianov, V. (2012). Nongauss distribution as a property of complex systemes that are organized by type of cenoses. Eastern-European Journal of Enterprise Technologies, 3/4(57), 27–32. Available at: http://journals.uran.ua/eejet/article/view/4010/3677

Published

2015-08-27

How to Cite

Делас, Н. И. (2015). “Correct entropy”in the analysis of complex systems: what is the consequence of rejecting the postulate of equal a priori probabilities?. Eastern-European Journal of Enterprise Technologies, 4(4(76), 4–14. https://doi.org/10.15587/1729-4061.2015.47332

Issue

Section

Mathematics and Cybernetics - applied aspects