Similarity identification algorithm of hard-structured data based on semantic networks

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.51051

Keywords:

search algorithm, bibliographic description, similarity search, semantic networks

Abstract

The main disadvantage of any similarity search algorithm is its purpose. Existing algorithms are focused purely on the text as a continuous element of structural data and do not take into account the context of information that is presented in the text. This makes it impossible to use algorithms for text with a specific context. The only application of such algorithms is the texts that can be elements of a more complex object of comparison. The paper presents a similarity search algorithm of hard-structured data using semantic networks. The built semantic network takes into account all the features of the bibliographic description of the publication and is endowed with methods of comparison of its separate parts. Application of the algorithm for similarity search of bibliographic descriptions in the information-analytical system "ScienceLP" was investigated. The research results have confirmed the usefulness of the developed algorithm for effective relevant search. For the versatility of the software implementation of the algorithm, reflection-oriented programming approach was used. Such an approach allows to identify almost any object, no matter whether it is built-in or user data type. This allows the algorithm to be independent of the type of the compared object and its internal structure.

Author Biographies

Руслан Богданович Тушницький, Lviv Polytechnic National University 12, S. Bandery str., Lviv, Ukraine, 79013

PhD, Associate Professor

Software Department

Володимир Мирославович Макар, Lviv Polytechnic National University 12, S. Bandery str., Lviv, Ukraine, 79013

PhD, Associate Professor

Software Department

References

  1. 1. Broder,A. Z.(1997).On the Resemblance and Containment of Documents.Proceedings of Compression and Complexity of SEQUENCES 1997, 21–29. doi: 10.1109/sequen.1997.666900
  2. 2. O'Hara,T., Mahesh,K., Nirenburg,S.(1998).Lexical Acquisition with WordNet and the Mikrokosmos Ontology. Proc. of the COLING/ACL Worskshop on Usage or WordNet in Natural Language Processing Systems, 94–101.
  3. 3. Nguyen, T.,Conrad,S. (2013). Combination of Lexical and Structure-Based Similarity Measures to Match Ontologies Automatically. Knowledge Discovery, Knowledge Engineering and Knowledge Management. Communications in Computer and Information Science,415, 101–112. doi: 10.1007/978-3-642-54105-6_7
  4. 4. Metzler, D., Dumais, S.,Meek,C. (2007). Similarity Measures for Short Segments of Text. Advances in Information Retrieval. Lecture Notes in Computer Science, 4425, 16–27. doi: 10.1007/978-3-540-71496-5_5
  5. 5. Metzler, D., Bernstein, Y., Croft, W. B., Moffat, A., Zobel, J. (2005). Similarity measures for tracking information flow. Proceedings of the 14th ACM International Conference on Information and Knowledge Management – CIKM’05, 517–524. doi: 10.1145/1099554.1099695
  6. 6. Buttler,D. (2004). A Short Survey of Document Structure Similarity Algorithms.The 5th International Conference on Internet Computing.
  7. 7. Identyfikatsiya bibliohrafichnykh opysiv(2015). Available at: https://uk.wikipedia.org/wiki/Identyfikatsiya_podibnosti_ bibliohrafichnykh_opysiv
  8. 8. Makar, V., Tushnytskyy, R. (2014). Informatsiyno-analitychna systema dlya avtomatyzatsiyi pidhotovky naukovykh zvitiv pidrozdiliv L'vivs'koyi politekhniky. Materialy 6-yi naukovo-praktychnoyi konferentsiyi «Innovatsiyni komp"yuterni tekhnolohiyi u vyshchiy shkoli», 177–182.
  9. 9. Fedasyuk, D.V., Makar, V. M., Tushnytskyy, R. B. (2013). Struktura informatsiino-analitychnoi systemy obliku pidhotovky naukovykh kadriv universytetu.Visnyk Natsionalnoho universytetu «Lvivska politekhnika». Seriia «Informatyzatsiia vyshchoho navchalnoho zakladu», 775, 99–103.
  10. 10. Kushnarenko, N. M. (2006). Naukova obrobka dokumentiv. Kyiv: Znanya, 334.
  11. 11. Haase, P., Schnizler, B., Broekstra, J., Ehrig, M., van Harmelen, F., Menken, M. et. al. (2006). Bibster – A Semantics-Based Bibliographic Peer-to-Peer System. Semantic Web and Peer-to-Peer, 349–363. doi: 10.1007/3-540-28347-1_19

Published

2015-10-21

How to Cite

Тушницький, Р. Б., & Макар, В. М. (2015). Similarity identification algorithm of hard-structured data based on semantic networks. Eastern-European Journal of Enterprise Technologies, 5(2(77), 38–44. https://doi.org/10.15587/1729-4061.2015.51051