Mathcad in the kinematic and dynamic analysis of the manipulator

Authors

  • Наталья Сергеевна Ащепкова Dnepropetrovsk national university by O. Gonchar, 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010, Ukraine https://orcid.org/0000-0002-1870-1062

DOI:

https://doi.org/10.15587/1729-4061.2015.51105

Keywords:

kinematic and dynamic analysis of the manipulator, coordinate transformation, law of motion, trajectory

Abstract

The  paper presents a technique for solving the problems of kinematic and dynamic analysis of the model industrial robot and reveals the effects of applying the suggested technique to a three-tier manipulator. The study has proved the expediency of Mathcad in solving the problems of kinematic and dynamic analysis, modeling the motion of the manipulator, as well as synthesis and analysis of the gripper trajectories of the model industrial robot.

This technique can be applied to solve both direct and inverse kinematics problems, determine the boundaries of the gripper reach and perform mathematical modeling of the manipulator motion. The projected path of the manipulator is supplied with the required forces and moments in the kinematic pairs.

The solution process is divided into simple computational procedures. The transformation of matrices, differentiation, as well as solution of differential and transcendental equations is performed due to the inbuilt functions and operators of the Mathcad application package. The suggested method does not require writing, debugging and testing programs. Problems of the kinematic and dynamic analysis of the manipulator are solved quicker and with fewer errors.

The suggested technique is useful in designing robotic systems and synthesizing optimal trajectories of a singular point.

Author Biography

Наталья Сергеевна Ащепкова, Dnepropetrovsk national university by O. Gonchar, 72 Gagarin ave., Dnepropetrovsk, Ukraine, 49010

PhD, associate professor

Department of mekhanotronik 

References

  1. Pechnikov, A. L., Zhmud', V. A., Trubin, V. G., Kolker, A. B. (2012). Perspektivy razvitija robototehnicheskih uchebnyh stendov dlja vysshego special'nogo obrazovanija v oblasti robototehniki, avtomatiki i mehanotroniki [Prospects of development of robototekhnicheskikh educational stands for the higher special education in area of robototekhniki, automation and mekhanotroniki]. Trudy konferencii Scientific World – Perspektivnye innovacii v nauke, obrazovanii, proizvodstve i transporte. Novosibirsk: NGTU. Available at: http://www.sworld.com.ua/index.php/ru/technical-sciences-212/informatics-computer-science -and-automation-212/13341-212-831
  2. Duseev, V. R. (2014). Upravlenie robotom Lego NXT posredstvom Bluetooth [Control of robot Lego NXT by means of Bluetooth] Vestnik nauki Sibiri. Serija: Informacionnye tehnologii i sistemy upravlenija, 2 (12), 147–153.
  3. Nefedov, G. A. (2014). Realizacija algoritma upravlenija chetyrjohkolesnym robotom Lego Mindstorms, obespechivajushhego dvizhenie vdol' zadannogo puti [Realization of algorithm of control a four-wheel robot Lego Mindstorms, providing motion along the set way]. Molodjozhnyj nauchno-tehnicheskij vestnik, 2. Available at: http://sntbul.bmstu.ru/doc/551896.html
  4. Lego Education. Available at: http://www.legoeducation.com
  5. Mindstorms Education NXT. Available at: https://education.lego.com/nl-nl/lesi/middle-school/mindstorms-education-nxt
  6. Lego Engineering. Available at: http://www.legoengineering.com
  7. Robotics Academy. Available at: http://www.education.rec.ri.cmu.edu
  8. Jurevich, E. I. (2005). Osnovy robototehniki [Bases of robototekhnik]. SPb.: Piter., 252.
  9. Vorob'ev, E. I., Popov, S. A., Sheveljova, G. I. (1988). Mehanika promyshlennyh robotov. Kinematika i dinamika: ucheb. posobie [Mechanics of industrial robots. Kinematics and dynamics]. Kyiv: Vishha shkola, 304.
  10. Burdakov, S. F., D'jachenko, V. A., Timofeev, A. N. (1986). Proektirovanie manipuljatorov promyshlennyh robotov i robotizirovannyh kompleksov [Planning of manipulators of industrial robots and robot’s complexes]. Moscow: Vysshaja shkola, 264.
  11. Sokol, G. І. (2002). Teorіja mehanіzmіv robototehnіchnih sistem. Kіnematika: navch. posіbn. z kursu „Teorіja mehanіzmіv і mashin” [Theory of mechanisms of the robot's systems. Kinematics]. Dnіpropetrovs'k: RVV DNU, 92.
  12. Shahinpur, M. (1990). Kurs robototehniki [A robot engineering textbook]. Moscow: Mir, 527.
  13. Ashhepkova, N. S. (2014). Modelirovanie i kinematicheskij analiz krivoshipno -shatunnogo mehanizma [Design and kinematics analysis crank-type mechanism]. Visnyk NTU “KhPI”. Serija: Informatyka ta modeljuvannja, 62 (1104), 4–12.
  14. Jejzenshpis, A. A. (2001). MathCad 2000. Rukovodstvo pol'zovatelja [MathСad 2000. User's guide]. Moscow: DMK Press, 570.
  15. Kotljarskij, L. N. (2005). MathCad. Reshenie inzhenernyh i jekonomicheskih zadach [MathCad. Decision of engineerings and economic tasks]. SPb.: Piter, 388.
  16. Kudrjavcev, E. M. (2001). MathCad 2000 Pro [MathCad 2000 Pro]. Moscow: DMK Press, 530–540.

Published

2015-10-20

How to Cite

Ащепкова, Н. С. (2015). Mathcad in the kinematic and dynamic analysis of the manipulator. Eastern-European Journal of Enterprise Technologies, 5(7(77), 54–63. https://doi.org/10.15587/1729-4061.2015.51105

Issue

Section

Applied mechanics