Development of technology of multicharged ion implantation of GaAs for submicron structures of large-scale integrated circuits

Authors

DOI:

https://doi.org/10.15587/1729-4061.2015.54233

Keywords:

multicharged ion implantation, gallium arsenide, CMOS technology, Schottky transistor, p -n junction, graded band gap solar cell

Abstract

The paper describes the development of technology of multicharged ion implantation for GaAs. This technology is essential to creating high-performance VLSI structures. The main advantage of ion implantation of GaAs is optimizing the doping profile for the active impact on the characteristics of Schottky field-effect transistors, namely reducing the surface influence on the stability of Schottky transistors and enhancing their performance by reducing the resistance of the source and drain regions. The first section of this paper presents the results of developing the GaAs-based structures with steep Schottky barrier. Next, the technology of multicharged ion implantation of P and B used to create doped pockets and security zones was described. This technology excludes thermal annealing and allows to create pockets and security zones simultaneously, which decreases the number of operations to ten and reduces the distance between the n and p transistors to 5.6 microns. Further, the characteristics of GaAs-based p+-n junctions were given, which allow to form complex structures with minimal defects, which in turn allows to create high-performance GaAs-based C-MOS transistors. Also, the paper considers the use of GaAs technology in solar cells, in which the charge carrier collection rate is increased by reducing the generation-recombination processes in the p-n junction, which greatly increases the efficiency of solar cells compared to monosilicon.

Author Biographies

Степан Петрович Новосядлий, Carpathian National University. Stefanik Str. Shevchenko, 57, Ivano-Frankivsk, Ukraine, 76025

Doctor of Technical Sciences, Professor

Department of Computer Engineering and Electronics

Сергій Іванович Бойко, Carpathian National University. V.Stefanyk Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025

Graduate student  

Department of Computer Engineering and Electronics

Любомир Васильович Мельник, Carpathian National University. V.Stefanyk Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025

Graduate student       

Department of Computer Engineering and Electronics

Святослав Володимирович Новосядлий, Carpathian National University. V.Stefanyk Shevchenka, 57, Ivano–Frankivsk, Ukraine, 76025

Student

Department of Computer Engineering and Electronics

References

  1. Ryssel, H., Ruge, I. (1983). Ion implantation. Moscow: Science, 360.
  2. Van Tuyl, R. L., Kumar, V., D’Avanzo, D. C., Taylor, T. W., Peterson, V. E., Hornbuckle, D. P. et al. (1982). A manufacturing process for analog and digital gallium arsenide integrated circuits. IEEE Transactions on Electron Devices, 29 (7), 1031–1038. doi: 10.1109/t-ed.1982.20830
  3. Novosyadlyy, S. P. (2010). Sub- and nano-scale technology of large scale integration circuits. Ivano-Frankivsk, Ukraine: Misto NV, 455.
  4. Novosyadlyy, S. P., Berezhansky, V. M. (2007). Multiply charged ion-implantation processing in the formation of pockets and metallization submicron VLSI structures. Metal Physics and the latest technology, 29 (7), 857–866.
  5. Novosyadlyy, S. P., Melnyk, L. V., Marchuk, S. M., Varvaruk, V. M. (2014). Models Semiinsulating Layers of Gallium Arsenide in Their Formation of Multiply Charged Ion Implantation. Physics and Chemistry of Solid State, 15 (4), 872–878.
  6. Simon, V. V. Kornilov, L. (1988). Equipment of ion implantation. Moscow: Radio and Communications, 354.
  7. Boltaks, B. I., Kolotov, M. N., Skoretina, E. A. (1983). Glubokie centry v GaAs, svjazanye s sobstvennymi strukturnymi defektami. Izvestija vuzov. Fizika, 10.
  8. Afanas'ev, V. A., Duhnovskij, M. P., Krysov, G. A. (1984). Oborudovanie dlja impul'snoj termoobrabotki poluprovodnikovyh materialov. Elektronika SVCh, 56–58.
  9. Okamoto, T. (1985). Ustrojstva ionnoj implantacii. Sajmicu kikaj, 1322–1325.
  10. Cherilov, A. V. (1984). Issledovanie elektrofizicheskih harakteristik ionno–legirovanih sloev. Elektronnaja tehnika, 8–12.
  11. Einspruch, N. G., Frensley, W. R. (1983). VLSI Electronics: Microstructure Science. Heterostructures and Quantum Devices. San Diego: Academic Press, Inc., 452.
  12. Mishra, S., Bhaumik, S., Panda, J. K., Ojha, S., Dhar, A., Kabiraj, D., Roy, A. (2013). Strain buildup in GaAs due to 100MeV Ag ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 316, 192–197. doi: 10.1016/j.nimb.2013.09.010
  13. Koumetz, S. D., Pesant, J.-C., Dubois, C. (2008). A computational study of ion-implanted beryllium diffusion in gallium arsenide. Computational Materials Science, 43 (4), 902–908. doi: 10.1016/j.commatsci.2008.02.003
  14. Pribat, D., Dieumegard, D., Croset, M., Cohen, C., Nipoti, R., Siejka, J. et al. (1983). Ion implantation of silicon in gallium arsenide: Damage and annealing characterizations. Nuclear Instruments and Methods in Physics Research, 209-210 (2), 737–742. doi: 10.1016/0167-5087(83)90876-1
  15. Hutchinson, S., Gwilliam, R., Kelly, M., Sealy, B., Chew, A., Stephens, J. (1999). Acceptor profile control in GaAs using co-implantation of Zn and P. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 148 (1–4), 459–462. doi: 10.1016/s0168-583x(98)00674-0
  16. Jayavel, P., Santhakumar, K., Rajagopalan, S., Sastry, V. S., Balamurugan, K., Nair, K. G. M. (2002). The effect of nitrogen implantation on structural changes in semi-insulating GaAs. Materials Science and Engineering: B, 94 (1), 66–70. doi: 10.1016/s0921-5107(02)00086-7

Published

2015-12-25

How to Cite

Новосядлий, С. П., Бойко, С. І., Мельник, Л. В., & Новосядлий, С. В. (2015). Development of technology of multicharged ion implantation of GaAs for submicron structures of large-scale integrated circuits. Eastern-European Journal of Enterprise Technologies, 6(5(78), 32–40. https://doi.org/10.15587/1729-4061.2015.54233

Issue

Section

Applied physics