The study of microheterogeneous distribution of admixture in silicon monocrystals

Authors

  • Иван Федорович Червоный Doctor of Technical Sciences, Professor, Head of Department Department of nonferrous metals, Ukraine
  • Ольга Петровна Головко Zaporozhe State Engineering Academy 226 Lenin ave., Zaporozhe, Ukraine, 69006, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2015.56909

Keywords:

silicon, crystallization front, single crystal/monocrystal, admixture, heterogeneity, strata, microcircuit, concentration, overcooling, phase

Abstract

We have analyzed the accumulation of admixture in the melt at the crystallization frontline in the process of growing silicon monocrystals and studied the model of accelerated crystallization of the melt area. The applied model of the admixture redistribution is as follows: when one layer of silicon crystallizes, one part of the admixture is absorbed by a growing crystal, while the other part remains in the melt and enriches its frontal area. When the second layer of silicon crystallizes, the growing crystal adsorbs the admixture from the admixture-enriched melt after crystallization of the first atomic layer, etc. Therefore, the melt frontal area experiences a stepwise accumulation of admixture and forms an area of the concentrate overcooling, which involves a possible growth of the concentrate to the critical value––there may occur an independent second phase.

According to calculations of the equation, the growth rate increases 5 ... 7 times, which provides conditions for a saltatory change in the growth rate and crystallization of the admixture-enriched melt layer. After the saltatory crystallization, the frontline field repeats the admixture accumulation to a certain value and the mode of accelerated crystallization.

The strata characteristics can be eliminated or considerably reduced due to the proposed modes of growing single crystals at high velocities. The proposed technology prevents admixture accumulation at the crystallization frontline, and ensures its uniform distribution over a single crystal. 

Author Biographies

Иван Федорович Червоный, Doctor of Technical Sciences, Professor, Head of Department Department of nonferrous metals

Zaporozhye State Engineering Academy, Lenina, 226, Zaporozhye, Ukraine, 69006

Ольга Петровна Головко, Zaporozhe State Engineering Academy 226 Lenin ave., Zaporozhe, Ukraine, 69006

Candidate of physics-mathematical sciences, associate professor

Department of Non-Ferrous Metallurgy 

References

  1. Zakon Mura i ego vliyanie na mikroprotsessoryi. Sozdaem svoy protsessor. Available at: http://www.igromania.ru/articles/46496/Zakon_Mura_i_ego_vliyanie_na_mikroprocessory.htm
  2. Friedrich, J., Stockmeier, L., Muller, G. (2013). Constitutional Supercooling in Czochralski Growth of Heavily Doped Silicon Crystals. Acta Physica Polonica, 124 (2), 219–226. doi: 10.12693/aphyspola.124.219
  3. Galindo, V., Niemietz, K., Pätzold, O., Gerbeth, G. (2012). Numerical and experimental modeling of VGF-type buoyant flow under the influence of traveling and rotating magnetic fields. Journal of Crystal Growth. 5th International Workshop on Crystal Growth Technology, 360, 30–34. doi: 10.1016/j.jcrysgro.2011.09.035
  4. Patent RU 2257428. Byivalyiy. Sposob polucheniya odnorodnyih mono-kristallov. pulished 27.07.2005. Byul. № 2. Available at: http://www.freepatent.ru/images/patents/211/2257428/patent-2257428.pdf (Last accessed: 15.09.2014).
  5. Dumitrica, S., Vizman, D., Garandet, J.-P., Popescu, A. (2012). Numerical studies on a type of mechanical stirring in directional solidification method of multicrystalline silicon for photovoltaic applications. Journal of Crystal Growth, 360, 76–80. doi: 10.1016/j.jcrysgro.2012.01.011
  6. Iino, E., Takano, K., Fusegawa, I., Yamagishi, H. Formation of interstitial oxygen striations in cz grown silicon single crystals. Available at: http://books.google.ru/books?id=p4OJQlKloOoC&pg=PA148&lpg=PA148&dq=Striations+in+the+single-crystals+of+silicon&source=bl&ots=pnkfQXVhDF&sig=O0rzDRWDplSFJi0qbGo-WUlJlyE&hl=ru&sa=X&ei=PZ1kU9ahDqrzyAOfz4GQAw&ved=0CD0Q6AEwAg#v=onepage&q=Striat&f=false (Last accessed: 15.10.2015).
  7. Sluchinskaya, I. A. (2002). Osnovyi materialovedeniya i tehnologii polupro-vodnikov. Moscow: Nauka, 376. Available at: http://www.twirpx.com/file/96095/ (Last accessed: 17.08.2014).
  8. Chervonyi, I. F., Rekov, Y. V., Shvets, E. Ya., Golovko, O. P., Golovko, V. Yu., Egorov, S. G. (2014). The tunneling Phenomenon of crystallization of solid state materials in another (the effect Chervony). Scientific discovery –2013. Acollection of short descriptions of scientific discoveries, scientific ideas, scientific hypotheses. Moscow: Academy of natural Sciences, 31–33.
  9. Bagdasarov, H. S. (2004). High-Temperature crystallization from the melt. Moscow: FIZMATLIT, 160.
  10. Fal'kevich, Je. S., Pul'ner, Je. O., Chervonyj, I. F., Shvarcman, L. Ja., Jarkim, V. N., Salli, I. V., Pul'ner, Je. O., Chervonyj, I. F. (1992). Tehnologija poluprovodnikovogo kremnija. Moscow: Metallurgija, 408.

Published

2015-12-25

How to Cite

Червоный, И. Ф., & Головко, О. П. (2015). The study of microheterogeneous distribution of admixture in silicon monocrystals. Eastern-European Journal of Enterprise Technologies, 6(5(78), 41–47. https://doi.org/10.15587/1729-4061.2015.56909

Issue

Section

Applied physics