Study of lactose–fermenting yeasts kluyveromyces lactis for whey and apple pectin mixture fermentation

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.59692

Keywords:

apple pectin, whey, lactose–fermenting yeasts, fermented beverages, odor–active compounds

Abstract

This study was carried out by using whey and apple pectin in the fiber mixture as a fermentative medium in order to evaluate the biochemical activity of lactose–fermenting of some Kluyveromyces lactis strains during fermentation. The fermentation medium contained whey and apple pectin in the fiber in the ratio 9:1. Ten lactose–fermenting Kluyveromyces lactis strains coded 42 K, 95, 300, 304,317, 318, 325, 469, 868–K and 2452 were investigated.

During cultivation in aerobic conditions the biomass yield was the highest by yeast cultivation in whey and apple pectin in the fiber mixture with Kluyveromyces lactis 868–K strain (71.3˟106 CFU/ml). Maximum biomass accumulation of Kluyveromyces lactis 868–K strain was achieved on the 30 h of cultivation at a temperature of 30±2° С. But the addition of apple pectin in the fiber into whey caused lactose–fermenting yeast growth inhibition (in exponential multiplication phase 1.59 % less biomass accumulation compared with the sample without apple pectin in the fiber).

During the alcoholic fermentation, the dynamics of CO2 accumulation is positively correlated with the dynamics of biomass accumulation. Maximum CO2 content and ethanol content were observed after 30 h of fermentation at an optimal temperature of 32° С. The best contents of higher alcohols, aldehydes and esters were obtained in whey and APF fermented beverage by using Kluyveromyces lactis 868–K strain which consists of low contents of n–propane (1.84 mg/l), isobutane (29.30 mg/l), acetaldehyde (27 mg/l), and high contents of 2–methyl–1–butanol (73.52 mg/l), 3–methyl–1–butanol (211.11 mg/l), methylacetate (10.61 mg/l) and ethylacetate (85.11 mg/l).

Author Biographies

Natalia Chepel, National University of Food Technology 68 Volodimirskaya str., Kyiv, Ukraine, 03680

PhD, Assistant Professor

Department of technology of milk and dairy product

 

Olena Grek, National University of Food Technology 68 Volodimirskaya str., Kyiv, Ukraine, 03680

PhD, Assistant Professor

Department of technology of milk and dairy product

Olena Krasulya, National University of Food Technology 68 Volodimirskaya str., Kyiv, Ukraine, 03680

PhD, Assistant Professor

Department of technology of milk and dairy product

References

  1. Siso, M. I. G. (1996). The biotechnological utilization of cheese whey: A review. Bioresource Technology, 57 (1), 1–11. doi: 10.1016/0960-8524(96)00036-3
  2. Jelen, P. (2011). Whey processing. Utilization and Products. Encyclopedia of Dairy Sciences. 2nd Ed. London: London Academic Press, 737.
  3. Pesta, G., Meyer-Pittroff, R., Russ, W. (2007). Utilization of whey/Utilization of by–products and treatment of waste in the food industry. New York: Springer, 1093. doi: 10.1007/978-0-387-35766-9
  4. Baccouche, A., Ennouri, M., Felfoul, I., Attia, H. (2013). A physical stability study of whey-based prickly pear beverages. Food Hydrocolloids, 33 (2), 234–244. doi: 10.1016/j.foodhyd.2013.03.007
  5. Prazeres, A. R., Carvalho, F., Rivas, J. (2012). Cheese whey management: A review. Journal of Environmental Management, 110, 48–68. doi: 10.1016/j.jenvman.2012.05.018
  6. Hinkova, A., Zidova, P., Pour, V., Bubnik, Z., Henke, S., Salova, A., Kadlec, P. (2012). Potential of Membrane Separation Processes in Cheese Whey Fractionation and Separation. Procedia Engineering, 42, 1425–1436. doi: 10.1016/j.proeng.2012.07.536
  7. Pan, K., Song, Q., Wang, L., Cao, B. (2011). A study of demineralization of whey by nanofiltration membrane. Desalination, 267 (2-3), 217–221. doi: 10.1016/j.desal.2010.09.029
  8. Kargi, F., Ozmıhcı, S. (2006). Utilization of cheese whey powder (CWP) for ethanol fermentations: Effects of operating parameters. Enzyme and Microbial Technology, 38 (5), 711–718. doi: 10.1016/j.enzmictec.2005.11.006
  9. Rektor, A., Vatai, G. (2004). Membrane filtration of Mozzarella whey. Desalination, 162, 279–286. doi: 10.1016/s0011-9164(04)00052-9
  10. Jiménez-Flores, R., Higuera-Ciapara, I., Pouliot, Y. (2009). Beverages based on milk fat globule membrane (MFGM) and other novel concepts for dairy–based functional beverages. Functional and Speciality Beverage Technology. 1st Ed. Washington: Woodhead Publishing, 996.
  11. Jelicic, I., Bozanic, R., Tratnik, L. (2008). Whey based beverages – new generation of dairy products. Mljekarstvo, 58, 257–274.
  12. Harju, M., Kallioinen, H., Tossavainen, O. (2012). Lactose hydrolysis and other conversions in dairy products: Technological aspects. International Dairy Journal, 22 (2), 104–109. doi: 10.1016/j.idairyj.2011.09.011
  13. Dragone, G., Mussatto, S. I., Oliveira, J. M., Teixeira, J. A. (2009). Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 112 (4), 929–935. doi: 10.1016/j.foodchem.2008.07.005
  14. Gad, A. S., Emam, W. H., Mohamed, G. F., Sayd, A. F. (2013). Utilization Whey in Production of Functional Healthy Beverage “Whey-mango Beverages.” American Journal of Food Technology, 8 (3), 133–148. doi: 10.3923/ajft.2013.133.148
  15. Pescuma, M., Hebert, E. M., Mozzi, F., Valdez, G. F. (2010). Functional fermented whey–based beverage using lactic acid bacteria. International Journal of Food Microbiology, 141, 73–81. doi: 10.1016/j.ijfoodmicro.2010.04.011
  16. Baldasso, C., Barros, T. C., Tessaro, I. C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278 (1-3), 381–386. doi: 10.1016/j.desal.2011.05.055
  17. Neves, A. R., Pool, W. A., Kok, J., Kuipers, O. P., Santos, H. (2005). Overview on sugar metabolism and its control in Lactococcus lactis – The input from in vivo NMR. FEMS Microbiology Reviews, 29 (3), 531–554. doi: 10.1016/j.fmrre.2005.04.005
  18. Gallardo-Escamilla, F. J., Kelly, A. L., Delahunty, C. M. (2007). Mouthfeel and flavour of fermented whey with added hydrocolloids. International Dairy Journal, 17 (4), 308–315. doi: 10.1016/j.idairyj.2006.04.009
  19. Grek, О., Krasulya, O. (2013). Study of effect fibers on the communication forms of moisture in mixture with milk whey. Maisto chemija ir technologija, 47, 15–21.
  20. Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT – Food Science and Technology, 56 (2), 211–221. doi: 10.1016/j.lwt.2013.12.004
  21. Kohajdová, Z., Karovičová, J., Magala, M., Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68 (8), 1059–1065. doi: 10.2478/s11696-014-0567-1
  22. Min, B., Bae, I. Y., Lee, H. G., Yoo, S.-H., Lee, S. (2010). Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresource Technology, 101 (14), 5414–5418. doi: 10.1016/j.biortech.2010.02.022
  23. Matijevic, B., Lisak, K., Bozanic, R., Tratnik, L. (2011). Impact of enzymatic hydrolyzed lactose on fermentation and growth of probiotic bacteria in whey. Mljekarstvo, 61 (2), 154–160.
  24. Lima, A. F., Cavalcante, K. F., de Freitas, M. de F. M., Rodrigues, T. H. S., Rocha, M. V. P., Gonçalves, L. R. B. (2013). Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochemistry, 48 (3), 443–452. doi: 10.1016/j.procbio.2013.02.002
  25. Ukraine State Standard 4069:2002 (2002). Soft drinks. General specifications. Derzhspozhyvstandard of Ukraine Publishing, Kyiv. Available at: http://dobavkam.net
  26. Park, M., Choi, H., Kwon, D., Kim, Y. (2007). Study of volatile organic acids in freeze-dried Cheonggukjang formed during fermentation using SPME and stable-isotope dilution assay (SIDA). Food Chemistry, 105 (3), 1276–1280. doi: 10.1016/j.foodchem.2007.03.012
  27. Azhu Valappil, Z., Fan, X., Zhang, H. Q., Rouseff, R. L. (2009). Impact of Thermal and Nonthermal Processing Technologies on Unfermented Apple Cider Aroma Volatiles. Journal of Agricultural and Food Chemistry, 57 (3), 924–929. doi: 10.1021/jf803142d
  28. Plutowska, B., Wardencki, W. (2008). Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – A review. Food Chemistry, 107 (1), 449–463. doi: 10.1016/j.foodchem.2007.08.058
  29. Vanderhaegen, B., Neven, H., Coghe, S., Verstrepen, K. J., Verachtert, H., Derdelinckx, G. (2003). Evolution of Chemical and Sensory Properties during Aging of Top-Fermented Beer. Journal of Agricultural and Food Chemistry, 51 (23), 6782–6790. doi: 10.1021/jf034631z
  30. Duarte, W. F., Dias, D. R., Oliveira, J. M., Vilanova, M., Teixeira, J. A., e Silva, J. B. A., Schwan, R. F. (2010). Raspberry (Rubus idaeus L.) wine: Yeast selection, sensory evaluation and instrumental analysis of volatile and other compounds. Food Research International, 43 (9), 2303–2314. doi: 10.1016/j.foodres.2010.08.003
  31. Marinchenko, V. O., Domaretskiy, V. A., Shiyan, P. L. (2003). Technology of ethanol. Vinnitsa: Podillay – 2000, 496.
  32. Pino, J. A., Queris, O. (2011). Analysis of volatile compounds of mango wine. Food Chemistry, 125 (4), 1141–1146. doi: 10.1016/j.foodchem.2010.09.056

Downloads

Published

2016-02-11

How to Cite

Chepel, N., Grek, O., & Krasulya, O. (2016). Study of lactose–fermenting yeasts kluyveromyces lactis for whey and apple pectin mixture fermentation. Eastern-European Journal of Enterprise Technologies, 1(10(79), 58–64. https://doi.org/10.15587/1729-4061.2016.59692

Issue

Section

Technology and Equipment of Food Production